Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America.
PLoS Pathog. 2013;9(7):e1003419. doi: 10.1371/journal.ppat.1003419. Epub 2013 Jul 4.
DNA methylation regulates gene expression in many organisms. In eukaryotes, DNA methylation is associated with gene repression, while it exerts both activating and repressive effects in the Proteobacteria through largely locus-specific mechanisms. Here, we identify a critical DNA methyltransferase in M. tuberculosis, which we term MamA. MamA creates N⁶-methyladenine in a six base pair recognition sequence present in approximately 2,000 copies on each strand of the genome. Loss of MamA reduces the expression of a number of genes. Each has a MamA site located at a conserved position relative to the sigma factor -10 binding site and transcriptional start site, suggesting that MamA modulates their expression through a shared, not locus-specific, mechanism. While strains lacking MamA grow normally in vitro, they are attenuated in hypoxic conditions, suggesting that methylation promotes survival in discrete host microenvironments. Interestingly, we demonstrate strikingly different patterns of DNA methyltransferase activity in different lineages of M. tuberculosis, which have been associated with preferences for distinct host environments and different disease courses in humans. Thus, MamA is the major functional adenine methyltransferase in M. tuberculosis strains of the Euro-American lineage while strains of the Beijing lineage harbor a point mutation that largely inactivates MamA but possess a second functional DNA methyltransferase. Our results indicate that MamA influences gene expression in M. tuberculosis and plays an important but strain-specific role in fitness during hypoxia.
DNA 甲基化在许多生物体中调节基因表达。在真核生物中,DNA 甲基化与基因抑制有关,而在 Proteobacteria 中,它通过主要位于特定位置的机制发挥激活和抑制作用。在这里,我们鉴定了结核分枝杆菌中一种关键的 DNA 甲基转移酶,我们称之为 MamA。MamA 在基因组每条链上大约 2000 个拷贝的六碱基识别序列中创建 N⁶-甲基腺嘌呤。MamA 的缺失会降低许多基因的表达。每个基因都有一个 MamA 位点,位于相对于 sigma 因子-10 结合位点和转录起始位点的保守位置,这表明 MamA 通过共享而不是特定位置的机制来调节它们的表达。虽然缺乏 MamA 的菌株在体外正常生长,但它们在低氧条件下减弱,表明甲基化促进了在离散宿主微环境中的存活。有趣的是,我们在结核分枝杆菌的不同谱系中证明了截然不同的 DNA 甲基转移酶活性模式,这些模式与对不同宿主环境的偏好以及人类中不同的疾病过程有关。因此,MamA 是欧美谱系结核分枝杆菌菌株中的主要功能性腺嘌呤甲基转移酶,而北京谱系的菌株则携带一个点突变,该突变在很大程度上使 MamA 失活,但拥有第二个功能性 DNA 甲基转移酶。我们的研究结果表明,MamA 影响结核分枝杆菌中的基因表达,并在低氧条件下的适应性中发挥重要但菌株特异性的作用。