Department of Medicine, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ, USA.
Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
Lab Invest. 2021 Apr;101(4):423-429. doi: 10.1038/s41374-020-00488-z. Epub 2020 Sep 29.
Metabolic flux analysis (MFA) aims at revealing the metabolic reaction rates in a complex biochemical network. To do so, MFA uses the input of stable isotope labeling patterns of the intracellular metabolites. Elementary metabolic unit (EMU) is the computational framework to simulate the metabolite labeling patterns in a network, which was originally designed for simulating mass isotopomer distributions (MIDs) at the MS1 level. Recently, the EMU framework is expanded to simulate tandem mass spectrometry data. Tandem mass spectrometry has emerged as a new experimental approach to provide information on the positional isotope labeling of metabolites and therefore greatly improves the precision of MFA. In this review, we will discuss the new EMU framework that can accommodate the tandem mass isotopomer distributions (TMIDs) data. We will also analyze the improvement on the MFA precision by using TMID. Our analysis shows that combining the MIDs of the parent and daughter ions and the TMID for the MFA is more powerful than using TMID alone.
代谢通量分析(MFA)旨在揭示复杂生化网络中的代谢反应速率。为此,MFA 使用细胞内代谢物的稳定同位素标记模式作为输入。基本代谢单元(EMU)是模拟网络中代谢物标记模式的计算框架,最初是为了模拟 MS1 水平的质量同位素质谱分布(MIDs)而设计的。最近,EMU 框架已扩展到用于模拟串联质谱数据。串联质谱已成为一种新的实验方法,可以提供关于代谢物位置同位素标记的信息,从而极大地提高了 MFA 的精度。在这篇综述中,我们将讨论可以适应串联质谱同位素分布(TMIDs)数据的新 EMU 框架。我们还将分析使用 TMID 提高 MFA 精度的效果。我们的分析表明,将母离子和子离子的 MIDs 与 TMID 结合用于 MFA 比单独使用 TMID 更有效。