Department of Computational Biology, Cornell University, Ithaca, NY, USA.
Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA.
Nat Methods. 2020 Oct;17(10):985-988. doi: 10.1038/s41592-020-0959-9. Epub 2020 Sep 29.
Thorough quality assessment of novel interactions identified by proteome-wide cross-linking mass spectrometry (XL-MS) studies is critical. Almost all current XL-MS studies have validated cross-links against known three-dimensional structures of representative protein complexes. Here, we provide theoretical and experimental evidence demonstrating that this approach can drastically underestimate error rates for proteome-wide XL-MS datasets, and propose a comprehensive set of four data-quality metrics to address this issue.
全面评估通过蛋白质组学交联质谱(XL-MS)研究鉴定的新型相互作用至关重要。几乎所有当前的 XL-MS 研究都针对代表性蛋白质复合物的已知三维结构来验证交联。在这里,我们提供了理论和实验证据,证明这种方法可能会极大地低估蛋白质组学 XL-MS 数据集的错误率,并提出了一整套四项数据质量指标来解决这个问题。