Suppr超能文献

血管紧张素转换酶2(ACE2)在严重急性呼吸综合征冠状病毒2(SARS-CoV-2)感染情况下的灵活性。

The flexibility of ACE2 in the context of SARS-CoV-2 infection.

作者信息

Barros E P, Casalino L, Gaieb Z, Dommer A C, Wang Y, Fallon L, Raguette L, Belfon K, Simmerling C, Amaro R E

出版信息

bioRxiv. 2020 Sep 16:2020.09.16.300459. doi: 10.1101/2020.09.16.300459.

Abstract

UNLABELLED

The COVID-19 pandemic has swept over the world in the past months, causing significant loss of life and consequences to human health. Although numerous drug and vaccine developments efforts are underway, many questions remain outstanding on the mechanism of SARS-CoV-2 viral association to angiotensin-converting enzyme 2 (ACE2), its main host receptor, and entry in the cell. Structural and biophysical studies indicate some degree of flexibility in the viral extracellular Spike glycoprotein and at the receptor binding domain-receptor interface, suggesting a role in infection. Here, we perform all-atom molecular dynamics simulations of the glycosylated, full-length membrane-bound ACE2 receptor, in both an apo and spike receptor binding domain (RBD) bound state, in order to probe the intrinsic dynamics of the ACE2 receptor in the context of the cell surface. A large degree of fluctuation in the full length structure is observed, indicating hinge bending motions at the linker region connecting the head to the transmembrane helix, while still not disrupting the ACE2 homodimer or ACE2-RBD interfaces. This flexibility translates into an ensemble of ACE2 homodimer conformations that could sterically accommodate binding of the spike trimer to more than one ACE2 homodimer, and suggests a mechanical contribution of the host receptor towards the large spike conformational changes required for cell fusion. This work presents further structural and functional insights into the role of ACE2 in viral infection that can be exploited for the rational design of effective SARS-CoV-2 therapeutics.

STATEMENT OF SIGNIFICANCE

As the host receptor of SARS-CoV-2, ACE2 has been the subject of extensive structural and antibody design efforts in aims to curtail COVID-19 spread. Here, we perform molecular dynamics simulations of the homodimer ACE2 full-length structure to study the dynamics of this protein in the context of the cellular membrane. The simulations evidence exceptional plasticity in the protein structure due to flexible hinge motions in the head-transmembrane domain linker region and helix mobility in the membrane, resulting in a varied ensemble of conformations distinct from the experimental structures. Our findings suggest a dynamical contribution of ACE2 to the spike glycoprotein shedding required for infection, and contribute to the question of stoichiometry of the Spike-ACE2 complex.

摘要

未标注

在过去几个月里,新冠疫情席卷全球,造成了重大生命损失并对人类健康产生了影响。尽管目前正在进行大量药物和疫苗研发工作,但关于严重急性呼吸综合征冠状病毒2(SARS-CoV-2)与血管紧张素转换酶2(ACE2,其主要宿主受体)的病毒关联机制及其进入细胞的过程,仍有许多问题悬而未决。结构和生物物理研究表明,病毒细胞外刺突糖蛋白以及受体结合域-受体界面存在一定程度的灵活性,这表明其在感染过程中发挥了作用。在此,我们对糖基化的全长膜结合型ACE2受体进行全原子分子动力学模拟,模拟其处于无配体状态以及与刺突受体结合域(RBD)结合的状态,以探究细胞表面环境下ACE2受体的内在动力学。我们观察到全长结构存在很大程度的波动,这表明在连接头部与跨膜螺旋的连接区域存在铰链弯曲运动,同时仍未破坏ACE2同二聚体或ACE2-RBD界面。这种灵活性转化为一系列ACE2同二聚体构象,这些构象在空间上可以容纳刺突三聚体与不止一个ACE2同二聚体的结合,并表明宿主受体对细胞融合所需的刺突大构象变化有机械贡献。这项工作进一步揭示了ACE2在病毒感染中的结构和功能,可为合理设计有效的SARS-CoV-2治疗药物提供依据。

重要性声明

作为SARS-CoV-2的宿主受体,ACE2一直是旨在遏制新冠病毒传播的广泛结构和抗体设计工作的研究对象。在此,我们对ACE2同二聚体全长结构进行分子动力学模拟,以研究该蛋白在细胞膜环境中的动力学。模拟结果表明,由于头部-跨膜结构域连接区域的灵活铰链运动和膜中螺旋的移动性,该蛋白结构具有特殊的可塑性,从而产生了一系列与实验结构不同的构象。我们的研究结果表明ACE2对感染所需的刺突糖蛋白脱落有动态贡献,并有助于解决刺突-ACE2复合物的化学计量问题。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63e1/7523095/ead428ce34a7/nihpp-2020.09.16.300459-f0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验