Suppr超能文献

SARS-CoV-2 感染背景下 ACE2 的灵活性。

The flexibility of ACE2 in the context of SARS-CoV-2 infection.

机构信息

Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California.

Department of Chemistry, Stony Brook University, Stony Brook, New York.

出版信息

Biophys J. 2021 Mar 16;120(6):1072-1084. doi: 10.1016/j.bpj.2020.10.036. Epub 2020 Nov 13.

Abstract

The coronavirus disease 2019 (COVID-19) pandemic has swept over the world in the past months, causing significant loss of life and consequences to human health. Although numerous drug and vaccine development efforts are underway, there are many outstanding questions on the mechanism of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viral association to angiotensin-converting enzyme 2 (ACE2), its main host receptor, and host cell entry. Structural and biophysical studies indicate some degree of flexibility in the viral extracellular spike glycoprotein and at the receptor-binding domain (RBD)-receptor interface, suggesting a role in infection. Here, we perform explicitly solvated, all-atom, molecular dynamics simulations of the glycosylated, full-length, membrane-bound ACE2 receptor in both an apo and spike RBD-bound state to probe the intrinsic dynamics of the ACE2 receptor in the context of the cell surface. A large degree of fluctuation in the full-length structure is observed, indicating hinge bending motions at the linker region connecting the head to the transmembrane helix while still not disrupting the ACE2 homodimer or ACE2-RBD interfaces. This flexibility translates into an ensemble of ACE2 homodimer conformations that could sterically accommodate binding of the spike trimer to more than one ACE2 homodimer and suggests a mechanical contribution of the host receptor toward the large spike conformational changes required for cell fusion. This work presents further structural and functional insights into the role of ACE2 in viral infection that can potentially be exploited for the rational design of effective SARS-CoV-2 therapeutics.

摘要

在过去的几个月里,2019 年冠状病毒病(COVID-19)疫情席卷全球,给人类健康带来了重大的生命损失和后果。尽管正在进行大量的药物和疫苗开发工作,但关于严重急性呼吸综合征冠状病毒 2(SARS-CoV-2)病毒与血管紧张素转换酶 2(ACE2)的关联机制,其主要宿主受体和宿主细胞进入等方面仍存在许多悬而未决的问题。结构和生物物理研究表明,病毒细胞外刺突糖蛋白和受体结合域(RBD)-受体界面在一定程度上具有灵活性,提示其在感染中起作用。在这里,我们对糖基化的全长膜结合 ACE2 受体进行了明确的溶剂化、全原子、分子动力学模拟,分别处于无配体和刺突 RBD 结合状态,以探测 ACE2 受体在细胞表面环境下的固有动力学。全长结构中观察到很大程度的波动,表明连接头部和跨膜螺旋的接头区域存在铰链弯曲运动,而不会破坏 ACE2 同源二聚体或 ACE2-RBD 界面。这种灵活性转化为 ACE2 同源二聚体构象的集合,可以通过空间位阻容纳三聚体刺突与多个 ACE2 同源二聚体的结合,并提示宿主受体在细胞融合所需的大刺突构象变化中具有机械贡献。这项工作进一步提供了 ACE2 在病毒感染中的结构和功能见解,这可能为 SARS-CoV-2 治疗药物的合理设计提供依据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/91df/8492450/040ee7077c55/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验