Slagowski Jordan M, Redler Gage, Malin Martha J, Cammin Jochen, Lobb Eric C, Lee Brian H, Sethi Anil, Roeske John C, Flores-Martinez Everardo, Stevens Tynan, Yenice Kamil M, Green Olga, Mutic Sasa, Aydogan Bulent
Radiation and Cellular Oncology, University of Chicago, Chicago, IL, 60637, USA.
Radiation Oncology, Moffitt Cancer Center, Tampa, FL, 33607, USA.
Med Phys. 2020 Nov;47(11):5455-5466. doi: 10.1002/mp.14503. Epub 2020 Oct 18.
MRI is the gold-standard imaging modality for brain tumor diagnosis and delineation. The purpose of this work was to investigate the feasibility of performing brain stereotactic radiosurgery (SRS) with a 0.35 T MRI-guided linear accelerator (MRL) equipped with a double-focused multileaf collimator (MLC). Dosimetric comparisons were made vs a conventional C-arm-mounted linac with a high-definition MLC.
The quality of MRL single-isocenter brain SRS treatment plans was evaluated as a function of target size for a series of spherical targets with diameters from 0.6 cm to 2.5 cm in an anthropomorphic head phantom and six brain metastases (max linear dimension = 0.7-1.9 cm) previously treated at our clinic on a conventional linac. Each target was prescribed 20 Gy to 99% of the target volume. Step-and-shoot IMRT plans were generated for the MRL using 11 static coplanar beams equally spaced over 360° about an isocenter placed at the center of the target. Couch and collimator angles are fixed for the MRL. Two MRL planning strategies (VR1 and VR2) were investigated. VR1 minimized the 12 Gy isodose volume while constraining the maximum point dose to be within ±1 Gy of 25 Gy which corresponded to normalization to an 80% isodose volume. VR2 minimized the 12 Gy isodose volume without the maximum dose constraint. For the conventional linac, the TB1 method followed the same strategy as VR1 while TB2 used five noncoplanar dynamic conformal arcs. Plan quality was evaluated in terms of conformity index (CI), conformity/gradient index (CGI), homogeneity index (HI), and volume of normal brain receiving ≥12 Gy (V ). Quality assurance measurements were performed with Gafchromic EBT-XD film following an absolute dose calibration protocol.
For the phantom study, the CI of MRL plans was not significantly different compared to a conventional linac (P > 0.05). The use of dynamic conformal arcs and noncoplanar beams with a conventional linac spared significantly more normal brain (P = 0.027) and maximized the CGI, as expected. The mean CGI was 95.9 ± 4.5 for TB2 vs 86.6 ± 3.7 (VR1), 88.2 ± 4.8 (VR2), and 88.5 ± 5.9 (TB1). Each method satisfied a normal brain V ≤ 10.0 cm planning goal for targets with diameter ≤2.25 cm. The mean V was 3.1 cm for TB2 vs 5.5 cm , 5.0 cm and 4.3 cm , for VR1, VR2, and TB1, respectively. For a 2.5-cm diameter target, only TB2 met the V planning objective. The MRL clinical brain plans were deemed acceptable for patient treatment. The normal brain V was ≤6.0 cm for all clinical targets (maximum target volume = 3.51 cm ). CI and CGI ranged from 1.12-1.65 and 81.2-88.3, respectively. Gamma analysis pass rates (3%/1mm criteria) exceeded 97.6% for six clinical targets planned and delivered on the MRL. The mean measured vs computed absolute dose difference was -0.1%.
The MRL system can produce clinically acceptable brain SRS plans for spherical lesions with diameter ≤2.25 cm. Large lesions (>2.25 cm) should be treated with a linac capable of delivering noncoplanar beams.
磁共振成像(MRI)是脑肿瘤诊断和轮廓勾画的金标准成像方式。本研究的目的是探讨使用配备双聚焦多叶准直器(MLC)的0.35 T MRI引导直线加速器(MRL)进行脑部立体定向放射外科治疗(SRS)的可行性。将其剂量学与配备高清MLC的传统C型臂直线加速器进行比较。
在一个仿真人体头部模型中,针对一系列直径从0.6 cm至2.5 cm的球形靶区以及先前在我们诊所使用传统直线加速器治疗过的6个脑转移瘤(最大线性尺寸 = 0.7 - 1.9 cm),评估MRL单等中心脑部SRS治疗计划的质量与靶区大小的关系。每个靶区的99%靶体积处方剂量为20 Gy。使用11条静态共面射束为MRL生成步进式调强放疗(IMRT)计划,这些射束围绕位于靶区中心的等中心在360°范围内等间距分布。MRL的治疗床和准直器角度固定。研究了两种MRL计划策略(VR1和VR2)。VR1在将最大点剂量限制在25 Gy的±1 Gy范围内(对应于归一化为80%等剂量体积)的同时,使12 Gy等剂量体积最小化。VR2在不设最大剂量限制的情况下使12 Gy等剂量体积最小化。对于传统直线加速器,TB1方法遵循与VR1相同的策略,而TB2使用五条非共面动态适形弧。根据适形指数(CI)、适形/梯度指数(CGI)、均匀性指数(HI)以及接受≥12 Gy的正常脑体积(V )评估计划质量。按照绝对剂量校准方案,使用Gafchromic EBT-XD胶片进行质量保证测量。
对于模型研究,MRL计划的CI与传统直线加速器相比无显著差异(P > 0.05)。如预期的那样,使用传统直线加速器的动态适形弧和非共面射束可显著减少正常脑受照剂量(P = 0.027)并使CGI最大化。TB2的平均CGI为95.9 ± 4.5,而VR1为86.6 ± 3.7,VR2为88.2 ± 4.8,TB1为88.5 ± 5.9。对于直径≤2.25 cm的靶区,每种方法均满足正常脑V ≤ 10.0 cm³的计划目标。TB2的平均V 为3.1 cm³,而VR1、VR2和TB1分别为5.5 cm³、5.0 cm³和4.3 cm³。对于直径2.5 cm的靶区,只有TB2达到了V 计划目标。MRL临床脑部计划被认为可接受用于患者治疗。所有临床靶区(最大靶体积 = 3.51 cm³)的正常脑V 均≤6.0 cm³。CI和CGI分别在1.12 - 1.65和81.2 - 88.3范围内。在MRL上计划并实施的6个临床靶区的伽马分析通过率(3%/1 mm标准)超过97.6%。测量的与计算的绝对剂量平均差值为 -0.1%。
MRL系统可为直径≤2.25 cm的球形病变生成临床可接受的脑部SRS计划。对于较大病变(>2.25 cm),应使用能够提供非共面射束的直线加速器进行治疗。