Suppr超能文献

GABA 能和非 GABA 能 rNST 神经元中 Kv4 通道的表达和动力学。

Kv4 channel expression and kinetics in GABAergic and non-GABAergic rNST neurons.

机构信息

Division of Biosciences, Ohio State University, Columbus, Ohio.

College of Medicine, Ohio State University, Columbus, Ohio.

出版信息

J Neurophysiol. 2020 Dec 1;124(6):1727-1742. doi: 10.1152/jn.00396.2020. Epub 2020 Sep 30.

Abstract

The rostral nucleus of the solitary tract (rNST) serves as the first central relay in the gustatory system. In addition to synaptic interactions, central processing is also influenced by the ion channel composition of individual neurons. For example, voltage-gated K channels such as outward K current () can modify the integrative properties of neurons. currents are prevalent in rNST projection cells but are also found to a lesser extent in GABAergic interneurons. However, characterization of the kinetic properties of , the molecular basis of these currents, as well as the consequences of on spiking properties of identified rNST cells is lacking. Here, we show that in rNST GABAergic (G+) and non-GABAergic (G-) neurons share a common molecular basis. In both cell types, there was a reduction in following treatment with the specific Kv4 channel blocker AmmTx3. However, the kinetics of activation and inactivation of in the two cell types were different with G- neurons having significantly more negative half-maximal activation and inactivation values. Likewise, under current clamp, G- cells had significantly longer delays to spike initiation in response to a depolarizing stimulus preceded by a hyperpolarizing prepulse. Computational modeling and dynamic clamp suggest that differences in the activation half-maximum may account for the differences in delay. We further observed evidence for a window current under both voltage clamp and current clamp protocols. We speculate that the location of Kv4.3 channels on dendrites, together with a window current for at rest, serves to regulate excitatory afferent inputs. Here, we demonstrate that the transient outward K current occurs in both GABAergic and non-GABAergic neurons via Kv4.3 channels in the rostral (gustatory) solitary nucleus. Although found in both cell types, is more prevalent in non-GABAergic cells; a larger conductance at more negative potentials leads to a greater impact on spike initiation compared with GABAergic neurons. An window current further suggests that can regulate excitatory afferent input to the nucleus.

摘要

孤束核吻侧部(rNST)作为味觉系统的第一个中枢中继站。除了突触相互作用外,中枢处理还受到单个神经元的离子通道组成的影响。例如,电压门控 K 通道,如外向 K 电流(),可以改变神经元的整合特性。rNST 投射细胞中普遍存在,但在 GABA 能中间神经元中也较少发现。然而,缺乏对 rNST 细胞识别的这些电流的动力学特性、分子基础以及对 电流对尖峰特性的影响的特征描述。在这里,我们表明 rNST 中的 GABA 能(G+)和非 GABA 能(G-)神经元中的 电流具有共同的分子基础。在这两种细胞类型中,用特异性 Kv4 通道阻断剂 AmmTx3 处理后,均观察到 电流减少。然而,两种细胞类型的 电流的激活和失活动力学不同,G-神经元的激活和失活的半数最大值具有明显更负的数值。同样,在电流钳模式下,G-细胞对去极化刺激的尖峰起始延迟明显更长,而该去极化刺激之前是一个超极化的预备脉冲。计算建模和动态钳位表明,激活半最大值的差异可能解释了延迟的差异。我们进一步观察到在电压钳和电流钳方案下都存在窗口电流的证据。我们推测 Kv4.3 通道在树突上的位置,以及 电流在静息状态下的窗口电流,共同调节兴奋性传入输入。在这里,我们证明了通过 Kv4.3 通道在 rostral(味觉)孤束核中的瞬时外向 K 电流()发生在 GABA 能和非 GABA 能神经元中。尽管在两种细胞类型中都发现了,但在非 GABA 能细胞中更为普遍;更大的电导在更负的电位下导致对尖峰起始的影响比 GABA 能神经元更大。窗口电流进一步表明, 可以调节传入核的兴奋性传入。

相似文献

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验