Suppr超能文献

对抗式联合学习循环神经网络在不完全时间序列分类中的应用。

Adversarial Joint-Learning Recurrent Neural Network for Incomplete Time Series Classification.

出版信息

IEEE Trans Pattern Anal Mach Intell. 2022 Apr;44(4):1765-1776. doi: 10.1109/TPAMI.2020.3027975. Epub 2022 Mar 4.

Abstract

Incomplete time series classification (ITSC) is an important issue in time series analysis since temporal data often has missing values in practical applications. However, integrating imputation (replacing missing data) and classification within a model often rapidly amplifies the error from imputed values. Reducing this error propagation from imputation to classification remains a challenge. To this end, we propose an adversarial joint-learning recurrent neural network (AJ-RNN) for ITSC, an end-to-end model trained in an adversarial and joint learning manner. We train the system to categorize the time series as well as impute missing values. To alleviate the error introduced by each imputation value, we use an adversarial network to encourage the network to impute realistic missing values by distinguishing real and imputed values. Hence, AJ-RNN can directly perform classification with missing values and greatly reduce the error propagation from imputation to classification, boosting the accuracy. Extensive experiments on 68 synthetic datasets and 4 real-world datasets from the expanded UCR time series archive demonstrate that AJ-RNN achieves state-of-the-art performance. Furthermore, we show that our model can effectively alleviate the accumulating error problem through qualitative and quantitative analysis based on the trajectory of the dynamical system learned by the RNN. We also provide an analysis of the model behavior to verify the effectiveness of our approach.

摘要

不完全时间序列分类(ITSC)是时间序列分析中的一个重要问题,因为在实际应用中,时间数据通常会有缺失值。然而,在模型中将插补(替换缺失数据)和分类集成在一起通常会迅速放大插补值的误差。减少从插补到分类的这种误差传播仍然是一个挑战。为此,我们提出了一种用于 ITSC 的对抗联合学习递归神经网络(AJ-RNN),这是一种端到端的模型,以对抗和联合学习的方式进行训练。我们训练系统对时间序列进行分类并插补缺失值。为了减轻每个插补值引入的误差,我们使用对抗网络通过区分真实值和插补值来鼓励网络插补真实的缺失值。因此,AJ-RNN 可以直接对带有缺失值的时间序列进行分类,并大大减少从插补到分类的误差传播,从而提高准确性。在 68 个合成数据集和扩展 UCR 时间序列档案中的 4 个真实世界数据集上的广泛实验表明,AJ-RNN 实现了最先进的性能。此外,我们通过基于 RNN 学习的动态系统轨迹进行的定性和定量分析表明,我们的模型可以有效地缓解累积误差问题。我们还提供了对模型行为的分析,以验证我们方法的有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验