Suppr超能文献

ContrAttNet:多元时间序列数据插补的贡献与注意力方法

ContrAttNet: Contribution and attention approach to multivariate time-series data imputation.

作者信息

Yin Yunfei, Huang Caihao, Bao Xianjian

机构信息

College of Computer Science, Chongqing University, Chongqing, China.

Department of Computer Science, Maharishi University of Management, Fairfield, USA.

出版信息

Network. 2024 Jun 3:1-24. doi: 10.1080/0954898X.2024.2360157.

Abstract

The imputation of missing values in multivariate time-series data is a basic and popular data processing technology. Recently, some studies have exploited Recurrent Neural Networks (RNNs) and Generative Adversarial Networks (GANs) to impute/fill the missing values in multivariate time-series data. However, when faced with datasets with high missing rates, the imputation error of these methods increases dramatically. To this end, we propose a neural network model based on dynamic contribution and attention, denoted as . consists of three novel modules: feature attention module, iLSTM (imputation Long Short-Term Memory) module, and 1D-CNN (1-Dimensional Convolutional Neural Network) module. exploits temporal information and spatial feature information to predict missing values, where iLSTM attenuates the memory of LSTM according to the characteristics of the missing values, to learn the contributions of different features. Moreover, the feature attention module introduces an attention mechanism based on contributions, to calculate supervised weights. Furthermore, under the influence of these supervised weights, 1D-CNN processes the time-series data by treating them as spatial features. Experimental results show that outperforms other state-of-the-art models in the missing value imputation of multivariate time-series data, with average 6% MAPE and 9% MAE on the benchmark datasets.

摘要

多变量时间序列数据中缺失值的插补是一种基本且流行的数据处理技术。最近,一些研究利用循环神经网络(RNN)和生成对抗网络(GAN)来插补/填充多变量时间序列数据中的缺失值。然而,当面对缺失率较高的数据集时,这些方法的插补误差会急剧增加。为此,我们提出了一种基于动态贡献和注意力的神经网络模型,记为 。 由三个新颖的模块组成:特征注意力模块、iLSTM(插补长短期记忆)模块和一维卷积神经网络(1D-CNN)模块。 利用时间信息和空间特征信息来预测缺失值,其中iLSTM根据缺失值的特征减弱LSTM的记忆,以学习不同特征的贡献。此外,特征注意力模块引入了一种基于贡献的注意力机制,以计算监督权重。此外,在这些监督权重的影响下,1D-CNN将时间序列数据视为空间特征来进行处理。实验结果表明, 在多变量时间序列数据的缺失值插补方面优于其他现有模型,在基准数据集上平均MAPE为6%,MAE为9%。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验