Suppr超能文献

视噪声为纯净:从损坏图像中学习自监督去噪

Noisy-As-Clean: Learning Self-supervised Denoising from Corrupted Image.

作者信息

Xu Jun, Huang Yuan, Cheng Ming-Ming, Liu Li, Zhu Fan, Xu Zhou, Shao Ling

出版信息

IEEE Trans Image Process. 2020 Sep 30;PP. doi: 10.1109/TIP.2020.3026622.

Abstract

Supervised deep networks have achieved promising performance on image denoising, by learning image priors and noise statistics on plenty pairs of noisy and clean images. Unsupervised denoising networks are trained with only noisy images. However, for an unseen corrupted image, both supervised and unsupervised networks ignore either its particular image prior, the noise statistics, or both. That is, the networks learned from external images inherently suffer from a domain gap problem: the image priors and noise statistics are very different between the training and test images. This problem becomes more clear when dealing with the signal dependent realistic noise. To circumvent this problem, in this work, we propose a novel "Noisy-As-Clean" (NAC) strategy of training self-supervised denoising networks. Specifically, the corrupted test image is directly taken as the "clean" target, while the inputs are synthetic images consisted of this corrupted image and a second yet similar corruption. A simple but useful observation on our NAC is: as long as the noise is weak, it is feasible to learn a self-supervised network only with the corrupted image, approximating the optimal parameters of a supervised network learned with pairs of noisy and clean images. Experiments on synthetic and realistic noise removal demonstrate that, the DnCNN and ResNet networks trained with our self-supervised NAC strategy achieve comparable or better performance than the original ones and previous supervised/unsupervised/self-supervised networks. The code is publicly available at https://github.com/csjunxu/Noisy-As-Clean.

摘要

通过在大量噪声图像和清晰图像对上学习图像先验和噪声统计信息,监督深度网络在图像去噪方面取得了可观的性能。无监督去噪网络仅使用噪声图像进行训练。然而,对于一张未见过的受损图像,无论是监督网络还是无监督网络都会忽略其特定的图像先验、噪声统计信息,或者两者都忽略。也就是说,从外部图像学习到的网络本质上存在领域差距问题:训练图像和测试图像之间的图像先验和噪声统计信息差异很大。在处理与信号相关的真实噪声时,这个问题变得更加明显。为了规避这个问题,在这项工作中,我们提出了一种新颖的“噪声即清晰”(NAC)策略来训练自监督去噪网络。具体来说,将受损的测试图像直接作为“清晰”目标,而输入是由该受损图像和另一种类似的损伤组成的合成图像。关于我们的NAC有一个简单但有用的观察结果:只要噪声较弱,仅使用受损图像来学习自监督网络是可行的,它可以近似于用噪声图像和清晰图像对学习的监督网络的最优参数。在合成噪声和真实噪声去除方面的实验表明,使用我们的自监督NAC策略训练的DnCNN和ResNet网络比原始网络以及之前的监督/无监督/自监督网络具有相当或更好的性能。代码可在https://github.com/csjunxu/Noisy-As-Clean上公开获取。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验