文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

医学图像语义分割中的对比学习与自学习及可变形数据增强

Contrastive Learning vs. Self-Learning vs. Deformable Data Augmentation in Semantic Segmentation of Medical Images.

作者信息

Arabi Hossein, Zaidi Habib

机构信息

Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, CH-1211, Geneva 4, Switzerland.

Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, 9700 RB, Groningen, Netherlands.

出版信息

J Imaging Inform Med. 2024 Dec;37(6):3217-3230. doi: 10.1007/s10278-024-01159-x. Epub 2024 Jun 10.


DOI:10.1007/s10278-024-01159-x
PMID:38858260
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11612072/
Abstract

To develop a robust segmentation model, encoding the underlying features/structures of the input data is essential to discriminate the target structure from the background. To enrich the extracted feature maps, contrastive learning and self-learning techniques are employed, particularly when the size of the training dataset is limited. In this work, we set out to investigate the impact of contrastive learning and self-learning on the performance of the deep learning-based semantic segmentation. To this end, three different datasets were employed used for brain tumor and hippocampus delineation from MR images (BraTS and Decathlon datasets, respectively) and kidney segmentation from CT images (Decathlon dataset). Since data augmentation techniques are also aimed at enhancing the performance of deep learning methods, a deformable data augmentation technique was proposed and compared with contrastive learning and self-learning frameworks. The segmentation accuracy for the three datasets was assessed with and without applying data augmentation, contrastive learning, and self-learning to individually investigate the impact of these techniques. The self-learning and deformable data augmentation techniques exhibited comparable performance with Dice indices of 0.913 ± 0.030 and 0.920 ± 0.022 for kidney segmentation, 0.890 ± 0.035 and 0.898 ± 0.027 for hippocampus segmentation, and 0.891 ± 0.045 and 0.897 ± 0.040 for lesion segmentation, respectively. These two approaches significantly outperformed the contrastive learning and the original model with Dice indices of 0.871 ± 0.039 and 0.868 ± 0.042 for kidney segmentation, 0.872 ± 0.045 and 0.865 ± 0.048 for hippocampus segmentation, and 0.870 ± 0.049 and 0.860 ± 0.058 for lesion segmentation, respectively. The combination of self-learning with deformable data augmentation led to a robust segmentation model with no outliers in the outcomes. This work demonstrated the beneficial impact of self-learning and deformable data augmentation on organ and lesion segmentation, where no additional training datasets are needed.

摘要

为了开发一个强大的分割模型,对输入数据的潜在特征/结构进行编码对于将目标结构与背景区分开来至关重要。为了丰富提取的特征图,采用了对比学习和自学习技术,特别是当训练数据集的大小时有限的情况下。在这项工作中,我们着手研究对比学习和自学习对基于深度学习的语义分割性能的影响。为此,使用了三个不同的数据集,分别用于从磁共振图像中进行脑肿瘤和海马体描绘(分别为BraTS和Decathlon数据集)以及从计算机断层扫描图像中进行肾脏分割(Decathlon数据集)。由于数据增强技术也旨在提高深度学习方法的性能,因此提出了一种可变形数据增强技术,并将其与对比学习和自学习框架进行比较。在应用和不应用数据增强、对比学习和自学习的情况下,评估了这三个数据集的分割准确性,以单独研究这些技术的影响。自学习和可变形数据增强技术在肾脏分割中的Dice指数分别为0.913±0.030和0.920±0.022,在海马体分割中为0.890±0.035和0.898±0.027,在病变分割中为0.891±0.045和0.897±0.040,表现出可比的性能。这两种方法在肾脏分割中的Dice指数分别为0.871±0.039和0.868±0.042,在海马体分割中为0.872±0.045和0.865±0.048,在病变分割中为0.870±0.049和0.860±0.058,显著优于对比学习和原始模型。自学习与可变形数据增强的结合产生了一个强大的分割模型,结果中没有异常值。这项工作证明了自学习和可变形数据增强对器官和病变分割的有益影响,其中不需要额外的训练数据集。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f09a/11612072/2541a4eebb61/10278_2024_1159_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f09a/11612072/0edf02723e6c/10278_2024_1159_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f09a/11612072/3e30d684b51b/10278_2024_1159_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f09a/11612072/a92d386abd06/10278_2024_1159_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f09a/11612072/5061ba715796/10278_2024_1159_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f09a/11612072/0eafe6583243/10278_2024_1159_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f09a/11612072/6bf43eb4b4e7/10278_2024_1159_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f09a/11612072/2541a4eebb61/10278_2024_1159_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f09a/11612072/0edf02723e6c/10278_2024_1159_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f09a/11612072/3e30d684b51b/10278_2024_1159_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f09a/11612072/a92d386abd06/10278_2024_1159_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f09a/11612072/5061ba715796/10278_2024_1159_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f09a/11612072/0eafe6583243/10278_2024_1159_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f09a/11612072/6bf43eb4b4e7/10278_2024_1159_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f09a/11612072/2541a4eebb61/10278_2024_1159_Fig7_HTML.jpg

相似文献

[1]
Contrastive Learning vs. Self-Learning vs. Deformable Data Augmentation in Semantic Segmentation of Medical Images.

J Imaging Inform Med. 2024-12

[2]
Reducing annotation burden in MR: A novel MR-contrast guided contrastive learning approach for image segmentation.

Med Phys. 2024-4

[3]
Local contrastive loss with pseudo-label based self-training for semi-supervised medical image segmentation.

Med Image Anal. 2023-7

[4]
Data augmentation using generative adversarial networks (CycleGAN) to improve generalizability in CT segmentation tasks.

Sci Rep. 2019-11-15

[5]
Brain tumor segmentation and detection in MRI using convolutional neural networks and VGG16.

Cancer Biomark. 2025-3

[6]
Cross-modality (CT-MRI) prior augmented deep learning for robust lung tumor segmentation from small MR datasets.

Med Phys. 2019-8-20

[7]
A comparison between two semantic deep learning frameworks for the autosomal dominant polycystic kidney disease segmentation based on magnetic resonance images.

BMC Med Inform Decis Mak. 2019-12-12

[8]
Znet: Deep Learning Approach for 2D MRI Brain Tumor Segmentation.

IEEE J Transl Eng Health Med. 2022

[9]
A novel cross-modal data augmentation method based on contrastive unpaired translation network for kidney segmentation in ultrasound imaging.

Med Phys. 2025-6

[10]
Combined Transfer Learning and Test-Time Augmentation Improves Convolutional Neural Network-Based Semantic Segmentation of Prostate Cancer from Multi-Parametric MR Images.

Comput Methods Programs Biomed. 2021-10

引用本文的文献

[1]
Comparison of Deep Transfer Learning Against Contrastive Learning in Industrial Quality Applications for Heavily Unbalanced Data Scenarios When Data Augmentation Is Limited.

Sensors (Basel). 2025-5-12

本文引用的文献

[1]
An active learning approach to train a deep learning algorithm for tumor segmentation from brain MR images.

Insights Imaging. 2023-8-25

[2]
Self-Supervised Contrastive Learning for Medical Time Series: A Systematic Review.

Sensors (Basel). 2023-4-23

[3]
Self-Supervised Learning for Annotation Efficient Biomedical Image Segmentation.

IEEE Trans Biomed Eng. 2023-9

[4]
Semi-Self-Supervised Learning for Semantic Segmentation in Images with Dense Patterns.

Plant Phenomics. 2023

[5]
Self-training adversarial learning for cross-domain retinal OCT fluid segmentation.

Comput Biol Med. 2023-3

[6]
The Medical Segmentation Decathlon.

Nat Commun. 2022-7-15

[7]
Robust-Deep: A Method for Increasing Brain Imaging Datasets to Improve Deep Learning Models' Performance and Robustness.

J Digit Imaging. 2022-6

[8]
Automatic Segmentation of Kidneys and Kidney Tumors: The KiTS19 International Challenge.

Front Digit Health. 2022-1-4

[9]
Self-supervised driven consistency training for annotation efficient histopathology image analysis.

Med Image Anal. 2022-1

[10]
The impact of training sample size on deep learning-based organ auto-segmentation for head-and-neck patients.

Phys Med Biol. 2021-9-14

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索