Suppr超能文献

通过电合成金属有机框架将CO定量电还原为液体燃料

Quantitative Electro-Reduction of CO to Liquid Fuel over Electro-Synthesized Metal-Organic Frameworks.

作者信息

Kang Xinchen, Wang Bin, Hu Kui, Lyu Kai, Han Xue, Spencer Ben F, Frogley Mark D, Tuna Floriana, McInnes Eric J L, Dryfe Robert A W, Han Buxing, Yang Sihai, Schröder Martin

机构信息

Department of Chemistry, The University of Manchester, Manchester M13 9PL, United Kingdom.

Department of Materials, The University of Manchester, Manchester M13 9PL, United Kingdom.

出版信息

J Am Chem Soc. 2020 Oct 14;142(41):17384-17392. doi: 10.1021/jacs.0c05913. Epub 2020 Sep 30.

Abstract

Efficient electro-reduction of CO over metal-organic framework (MOF) materials is hindered by the poor contact between thermally synthesized MOF particles and the electrode surface, which leads to low Faradaic efficiency for a given product and poor electrochemical stability of the catalyst. We report a MOF-based electrode prepared via electro-synthesis of MFM-300(In) on an indium foil, and its activity for the electrochemical reduction of CO is assessed. The resultant MFM-300(In)-e/In electrode shows a 1 order of magnitude improvement in conductivity compared with that for MFM-300(In)/carbon-paper electrodes. MFM-300(In)-e/In exhibits a current density of 46.1 mA cm at an applied potential of -2.15 V vs Ag/Ag for the electro-reduction of CO in organic electrolyte, achieving an exceptional Faradaic efficiency of 99.1% for the formation of formic acid. The facile preparation of the MFM-300(In)-e/In electrode, coupled with its excellent electrochemical stability, provides a new pathway to develop efficient electro-catalysts for CO reduction.

摘要

热合成的金属有机框架(MOF)颗粒与电极表面之间的不良接触阻碍了CO在MOF材料上的高效电还原,这导致给定产物的法拉第效率较低且催化剂的电化学稳定性较差。我们报道了一种通过在铟箔上电合成MFM-300(In)制备的基于MOF的电极,并评估了其对CO电化学还原的活性。所得的MFM-300(In)-e/In电极与MFM-300(In)/碳纸电极相比,电导率提高了1个数量级。在有机电解质中对CO进行电还原时,MFM-300(In)-e/In在相对于Ag/Ag为-2.15 V的施加电位下显示出46.1 mA cm的电流密度,甲酸形成的法拉第效率达到了99.1%,表现优异。MFM-300(In)-e/In电极的简便制备及其出色的电化学稳定性,为开发用于CO还原的高效电催化剂提供了一条新途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5014/7586324/f4bd00e5e926/ja0c05913_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验