Suppr超能文献

一种新的数学方法预测室性心动过速心律失常:对植入式心脏复律除颤器预警系统的进一步深入了解。

Anticipation of ventricular tachyarrhythmias by a novel mathematical method: Further insights towards an early warning system in implantable cardioverter defibrillators.

机构信息

Theoretical Biology Group, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, México.

Electrophysiology Department, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico.

出版信息

PLoS One. 2020 Oct 1;15(10):e0235101. doi: 10.1371/journal.pone.0235101. eCollection 2020.

Abstract

Implantable cardioverter defibrillators (ICD) are the most effective therapy to terminate malignant ventricular arrhythmias (VA) and therefore to prevent sudden cardiac death. Until today, there is no way to predict the onset of such VA. Our aim was to develop a mathematical model that could predict VA in a timely fashion. We analyzed the time series of R-R intervals from 3 groups. Two groups from the Spontaneous Ventricular Tachyarrhythmia Database (v 1.0) were analyzed from a set of 81 pairs of R-R interval time series records from patients, each pair containing one record before the VT episode (Dataset 1A) and one control record which was obtained during the follow up visit (Dataset 1B). A third data set was composed of the R-R interval time series of 54 subjects without a significant arrhythmia heart disease (Dataset 2). We developed a new method to transform a time series into a network for its analysis, the ε-regular graphs. This novel approach transforms a time series into a network which is sensitive to the quantitative properties of the time series, it has a single parameter (ε) to be adjusted, and it can trace long-range correlations. This procedure allows to use graph theory to extract the dynamics of any time series. The average of the difference between the VT and the control record graph degree of each patient, at each time window, reached a global minimum value of -2.12 followed by a drastic increase of the average graph until reaching a local maximum of 5.59. The global minimum and the following local maxima occur at the windows 276 and 393, respectively. This change in the connectivity of the graphs distinguishes two distinct dynamics occurring during the VA, while the states in between the 276 and 393, determine a transitional state. We propose this change in the dynamic of the R-R intervals as a measurable and detectable "early warning" of the VT event, occurring an average of 514.625 seconds (8:30 minutes) before the onset of the VT episode. It is feasible to detect retrospectively early warnings of the VA episode using their corresponding ε-regular graphs, with an average of 8:30 minutes before the ICD terminates the VA event.

摘要

植入式心脏复律除颤器 (ICD) 是终止恶性室性心律失常 (VA) 的最有效治疗方法,因此可预防心源性猝死。直到今天,还没有办法预测此类 VA 的发作。我们的目的是开发一种能够及时预测 VA 的数学模型。我们分析了来自 3 组的 RR 间隔时间序列。两组来自自发性室性心动过速数据库 (v 1.0),从 81 对来自患者的 RR 间隔时间序列记录的一组中进行分析,每对包含 VT 发作前的一个记录 (数据集 1A) 和一个在随访就诊时获得的对照记录 (数据集 1B)。第三个数据集由 54 名无明显心律失常性心脏病的受试者的 RR 间隔时间序列组成 (数据集 2)。我们开发了一种将时间序列转换为网络进行分析的新方法,即 ε-正则图。这种新方法将时间序列转换为对时间序列的定量特性敏感的网络,它只有一个要调整的参数 (ε),并且可以追踪长程相关性。该过程允许使用图论来提取任何时间序列的动态。每个患者在每个时间窗口中,VT 记录和对照记录的图度之间的差异平均值达到-2.12 的全局最小值,随后图度的平均值急剧增加,直到达到 5.59 的局部最大值。全局最小值和随后的局部最大值分别发生在窗口 276 和 393。图的连通性的这种变化区分了在 VA 期间发生的两种截然不同的动态,而在 276 和 393 之间的状态则确定了过渡状态。我们提出,RR 间隔时间动态的这种变化可以作为 VT 事件的可测量和可检测的“预警”,在 VT 发作前平均发生 514.625 秒(8:30 分钟)。使用其相应的 ε-正则图来检测 VA 发作的早期预警是可行的,在 ICD 终止 VA 事件之前平均有 8:30 分钟。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验