Suppr超能文献

基于混合机器学习模型的再生骨料混凝土配合比优化

Mixture Optimization of Recycled Aggregate Concrete Using Hybrid Machine Learning Model.

作者信息

Nunez Itzel, Marani Afshin, Nehdi Moncef L

机构信息

Department of Civil and Environmental Engineering, Western University, London, ON N6G 1G8, Canada.

出版信息

Materials (Basel). 2020 Sep 29;13(19):4331. doi: 10.3390/ma13194331.

Abstract

Recycled aggregate concrete (RAC) contributes to mitigating the depletion of natural aggregates, alleviating the carbon footprint of concrete construction, and averting the landfilling of colossal amounts of construction and demolition waste. However, complexities in the mixture optimization of RAC due to the variability of recycled aggregates and lack of accuracy in estimating its compressive strength require novel and sophisticated techniques. This paper aims at developing state-of-the-art machine learning models to predict the RAC compressive strength and optimize its mixture design. Results show that the developed models including Gaussian processes, deep learning, and gradient boosting regression achieved robust predictive performance, with the gradient boosting regression trees yielding highest prediction accuracy. Furthermore, a particle swarm optimization coupled with gradient boosting regression trees model was developed to optimize the mixture design of RAC for various compressive strength classes. The hybrid model achieved cost-saving RAC mixture designs with lower environmental footprint for different target compressive strength classes. The model could be further harvested to achieve sustainable concrete with optimal recycled aggregate content, least cost, and least environmental footprint.

摘要

再生骨料混凝土(RAC)有助于缓解天然骨料的枯竭,减轻混凝土建筑的碳足迹,并避免大量建筑和拆除废物的填埋。然而,由于再生骨料的变异性以及估算其抗压强度时缺乏准确性,RAC的配合比优化存在复杂性,这需要新颖且复杂的技术。本文旨在开发先进的机器学习模型来预测RAC的抗压强度并优化其配合比设计。结果表明,所开发的模型包括高斯过程、深度学习和梯度提升回归,均取得了稳健的预测性能,其中梯度提升回归树的预测精度最高。此外,还开发了一种结合粒子群优化和梯度提升回归树的模型,以针对不同抗压强度等级优化RAC的配合比设计。该混合模型为不同目标抗压强度等级实现了具有较低环境足迹且节省成本的RAC配合比设计。该模型可进一步用于实现具有最佳再生骨料含量、最低成本和最小环境足迹的可持续混凝土。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2a80/7579239/9ba649b189f2/materials-13-04331-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验