Suppr超能文献

一种多基因模型利用体细胞突变特征有效预测具有高度遗传异质性的胃腺癌的总体预后。

A Multi-Gene Model Effectively Predicts the Overall Prognosis of Stomach Adenocarcinomas With Large Genetic Heterogeneity Using Somatic Mutation Features.

作者信息

Liu Xianming, Hui Xinjie, Kang Huayu, Fang Qiongfang, Chen Aiyue, Hu Yueming, Lu Desheng, Chen Xianxiong, Wang Yejun

机构信息

Department of Gastrointestinal Surgery, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, Shenzhen, China.

School of Basic Medicine, Shenzhen University Health Science Center, Shenzhen, China.

出版信息

Front Genet. 2020 Aug 26;11:940. doi: 10.3389/fgene.2020.00940. eCollection 2020.

Abstract

BACKGROUND

Stomach adenocarcinoma (STAD) is one of the most common malignancies worldwide with poor prognosis. It remains unclear whether the prognosis is associated with somatic gene mutations.

METHODS

In this research, we collected two independent STAD cohorts with both genetic profiling and clinical follow-up data, systematically investigated the association between the prognosis and somatic mutations, and analyzed the influence of heterogeneity on the prognosis-genetics association.

RESULTS

Typical association was identified between somatic mutations and overall prognosis for individual cohorts. In The Cancer Genome Atlas (TCGA) cohort, a list of 24 genes was also identified that tended to mutate within cases of the poorest prognosis. The association showed apparent heterogeneity between different cohorts, although common signatures could be identified. A machine-learning model was trained with 20 common genes that showed a similar mutation rate difference between prognostic groups in the two cohorts, and it classified the cases in each cohort into two groups with significantly different prognosis. The model outperformed both single-gene models and TNM-based staging system significantly.

CONCLUSION

The study made a systematic analysis on the association between STAD prognosis and somatic mutations, identified signature genes that showed mutation preference in different prognostic groups, and developed an effective multi-gene model that can effectively predict the overall prognosis of STAD in different cohorts.

摘要

背景

胃腺癌(STAD)是全球最常见的恶性肿瘤之一,预后较差。目前尚不清楚其预后是否与体细胞基因突变有关。

方法

在本研究中,我们收集了两个独立的STAD队列,这些队列既有基因谱分析数据又有临床随访数据,系统地研究了预后与体细胞突变之间的关联,并分析了异质性对预后-遗传学关联的影响。

结果

在各个队列中,体细胞突变与总体预后之间存在典型关联。在癌症基因组图谱(TCGA)队列中,还确定了24个基因的列表,这些基因在预后最差的病例中更容易发生突变。尽管可以识别出共同特征,但不同队列之间的关联显示出明显的异质性。使用20个常见基因训练了一个机器学习模型,这些基因在两个队列的预后组之间显示出相似的突变率差异,并且该模型将每个队列中的病例分为两组,其预后有显著差异。该模型的表现明显优于单基因模型和基于TNM的分期系统。

结论

本研究对STAD预后与体细胞突变之间的关联进行了系统分析,确定了在不同预后组中显示突变偏好的特征基因,并开发了一种有效的多基因模型,该模型可以有效预测不同队列中STAD的总体预后。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a751/7479248/cbafcea0f700/fgene-11-00940-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验