Suppr超能文献

生物人工肾

Bioartificial Kidneys.

作者信息

Corridon Peter R, Ko In Kap, Yoo James J, Atala Anthony

机构信息

Wake Forest Institute for Regenerative Medicine, Medical Center Boulevard, Winston-Salem, NC 27157-1083, USA.

Department of Physiology & Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, USA.

出版信息

Curr Stem Cell Rep. 2017 Jun;3(2):68-76. doi: 10.1007/s40778-017-0079-3. Epub 2017 Apr 12.

Abstract

PURPOSE OF REVIEW

Historically, there have been many advances in the ways in which we treat kidney diseases. In particular, hemodialysis has set the standard for treatment since the early 1960s and continues today as the most common form of treatment for acute, chronic, and end-stage conditions. However, the rising global prevalence of kidney diseases and our limited understanding of their etiologies have placed significant burdens on current clinical management regimens. This has resulted in a desperate need to improve the ways in which we treat the underlying and ensuing causes of kidney diseases for those who are unable to receive transplants.

RECENT FINDINGS

One way of possibly addressing these issues is through the use of improved bioartificial kidneys. Bioartificial kidneys provide an extension to conventional artificial kidneys and dialysis systems, by incorporating aspects of living cellular and tissue function, in an attempt to better mimic normal kidneys. Recent advancements in genomic, cellular, and tissue engineering technologies are facilitating the improved design of these systems.

SUMMARY

In this review, we outline various research efforts that have focused on the development of regenerated organs, implantable constructs, and whole bioengineered kidneys, as well as the transitions from conventional dialysis to these novel alternatives. As a result, we envision that these pioneering efforts can one day produce bioartificial renal technologies that can either perform or reintroduce essential function, and thus provide practical options to treat and potentially prevent kidney diseases.

摘要

综述目的

从历史上看,我们治疗肾脏疾病的方式有了许多进展。特别是,自20世纪60年代初以来,血液透析就设定了治疗标准,至今仍是治疗急性、慢性和终末期疾病最常见的治疗形式。然而,全球肾脏疾病患病率的上升以及我们对其病因的有限了解给当前的临床管理方案带来了沉重负担。这导致迫切需要改进我们治疗那些无法接受移植的患者肾脏疾病的潜在病因及后续病因的方式。

最新发现

解决这些问题的一种可能方法是使用改进的生物人工肾。生物人工肾通过纳入活细胞和组织功能的各个方面,对传统人工肾和透析系统进行了扩展,试图更好地模拟正常肾脏。基因组学、细胞和组织工程技术的最新进展促进了这些系统的改进设计。

总结

在本综述中,我们概述了各种研究工作,这些工作专注于再生器官、可植入构建体和全生物工程肾脏的开发,以及从传统透析向这些新型替代方法的转变。因此,我们设想这些开创性的努力有朝一日能够产生能够执行或重新引入基本功能的生物人工肾脏技术,从而为治疗和潜在预防肾脏疾病提供切实可行的选择。

相似文献

1
Bioartificial Kidneys.
Curr Stem Cell Rep. 2017 Jun;3(2):68-76. doi: 10.1007/s40778-017-0079-3. Epub 2017 Apr 12.
2
Current strategies and challenges in engineering a bioartificial kidney.
Front Biosci (Elite Ed). 2015 Jan 1;7(2):215-28. doi: 10.2741/E729.
3
Progress in the Development and Challenges for the Use of Artificial Kidneys and Wearable Dialysis Devices.
Kidney Dis (Basel). 2019 Feb;5(1):3-10. doi: 10.1159/000492932. Epub 2018 Oct 10.
4
Bioengineering strategies for nephrologists: kidney was not built in a day.
Expert Opin Biol Ther. 2020 May;20(5):467-480. doi: 10.1080/14712598.2020.1709439. Epub 2020 Jan 23.
5
Regeneration and bioengineering of the kidney: current status and future challenges.
Curr Urol Rep. 2014 Jan;15(1):379. doi: 10.1007/s11934-013-0379-9.
6
The bioartificial kidney: current status and future promise.
Pediatr Nephrol. 2014 Mar;29(3):343-51. doi: 10.1007/s00467-013-2467-y. Epub 2013 Apr 26.
7
Development of bioartificial kidneys.
Nephrology (Carlton). 2003 Oct;8 Suppl:S10-5. doi: 10.1046/j.1440-1797.8.s.4.x.
8
Update on Renal Replacement Therapy: Implantable Artificial Devices and Bioengineered Organs.
Tissue Eng Part B Rev. 2016 Aug;22(4):330-40. doi: 10.1089/ten.TEB.2015.0467. Epub 2016 Apr 12.
9
Prospect for kidney bioengineering: shortcomings of the status quo.
Expert Opin Biol Ther. 2015 Apr;15(4):547-58. doi: 10.1517/14712598.2015.993376. Epub 2015 Feb 1.
10
Regenerative hepatology: In the quest for a modern prometheus?
Dig Liver Dis. 2020 Oct;52(10):1106-1114. doi: 10.1016/j.dld.2020.08.001. Epub 2020 Aug 29.

引用本文的文献

1
Artificial Intelligence in the Intensive Care Unit: Current Evidence on an Inevitable Future Tool.
Cureus. 2024 May 7;16(5):e59797. doi: 10.7759/cureus.59797. eCollection 2024 May.
2
A proposed model of xeno-keratoplasty using 3D printing and decellularization.
Front Pharmacol. 2023 Sep 20;14:1193606. doi: 10.3389/fphar.2023.1193606. eCollection 2023.
3
Computational approaches for evaluating morphological changes in the corneal stroma associated with decellularization.
Front Bioeng Biotechnol. 2023 May 26;11:1105377. doi: 10.3389/fbioe.2023.1105377. eCollection 2023.
9
From waste to wealth: Repurposing slaughterhouse waste for xenotransplantation.
Front Bioeng Biotechnol. 2023 Feb 3;11:1091554. doi: 10.3389/fbioe.2023.1091554. eCollection 2023.
10
Mitigating challenges and expanding the future of vascular tissue engineering-are we there yet?
Front Physiol. 2023 Jan 4;13:1079421. doi: 10.3389/fphys.2022.1079421. eCollection 2022.

本文引用的文献

1
National Health Spending: Faster Growth In 2015 As Coverage Expands And Utilization Increases.
Health Aff (Millwood). 2017 Jan 1;36(1):166-176. doi: 10.1377/hlthaff.2016.1330. Epub 2016 Dec 2.
2
A wearable artificial kidney for patients with end-stage renal disease.
JCI Insight. 2016 Jun 2;1(8). doi: 10.1172/jci.insight.86397.
3
Modeling Kidney Disease with iPS Cells.
Biomark Insights. 2015 Dec 22;10(Suppl 1):153-69. doi: 10.4137/BMI.S20054. eCollection 2015.
4
A Mini Overview of Isolation, Characterization and Application of Amniotic Fluid Stem Cells.
Int J Stem Cells. 2015 Nov;8(2):115-20. doi: 10.15283/ijsc.2015.8.2.115.
5
Bringing regenerative medicines to the clinic: the future for regulation and reimbursement.
Regen Med. 2015;10(7):897-911. doi: 10.2217/rme.15.51. Epub 2015 Nov 13.
6
Bioengineering Human Myocardium on Native Extracellular Matrix.
Circ Res. 2016 Jan 8;118(1):56-72. doi: 10.1161/CIRCRESAHA.115.306874. Epub 2015 Oct 26.
7
Kidney diseases and tissue engineering.
Methods. 2016 Apr 15;99:112-9. doi: 10.1016/j.ymeth.2015.06.020. Epub 2015 Jun 29.
8
Cell-based therapy for kidney disease.
Korean J Urol. 2015 Jun;56(6):412-21. doi: 10.4111/kju.2015.56.6.412. Epub 2015 May 27.
9
Vascular Endothelial Growth Factor C for Polycystic Kidney Diseases.
J Am Soc Nephrol. 2016 Jan;27(1):69-77. doi: 10.1681/ASN.2014090856. Epub 2015 Jun 2.
10
A review of cellularization strategies for tissue engineering of whole organs.
Front Bioeng Biotechnol. 2015 Mar 30;3:43. doi: 10.3389/fbioe.2015.00043. eCollection 2015.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验