Suppr超能文献

人工肾及可穿戴透析设备的发展进展与应用挑战

Progress in the Development and Challenges for the Use of Artificial Kidneys and Wearable Dialysis Devices.

作者信息

Hueso Miguel, Navarro Estanislao, Sandoval Diego, Cruzado Josep Maria

机构信息

Nephrology Department, Hospital Universitari Bellvitge and Bellvitge Research Institute (IDIBELL), L'Hospitalet de Llobregat, Spain.

Independent Researcher, Barcelona, Spain.

出版信息

Kidney Dis (Basel). 2019 Feb;5(1):3-10. doi: 10.1159/000492932. Epub 2018 Oct 10.

Abstract

BACKGROUND

Renal transplantation is the treatment of choice for chronic kidney disease (CKD) patients, but the shortage of kidneys and the disabling medical conditions these patients suffer from make dialysis essential for most of them. Since dialysis drastically affects the patients' lifestyle, there are great expectations for the development of wearable artificial kidneys, although their use is currently impeded by major concerns about safety. On the other hand, dialysis patients with hemodynamic instability do not usually tolerate intermittent dialysis therapy because of their inability to adapt to a changing scenario of unforeseen events. Thus, the development of novel wearable dialysis devices and the improvement of clinical tolerance will need contributions from new branches of engineering such as artificial intelligence (AI) and machine learning (ML) for the real-time analysis of equipment alarms, dialysis parameters, and patient-related data with a real-time feedback response. These technologies are endowed with abilities normally associated with human intelligence such as learning, problem solving, human speech understanding, or planning and decision-making. Examples of common applications of AI are visual perception (computer vision), speech recognition, and language translation. In this review, we discuss recent progresses in the area of dialysis and challenges for the use of AI in the development of artificial kidneys.

SUMMARY AND KEY MESSAGES

Emerging technologies derived from AI, ML, electronics, and robotics will offer great opportunities for dialysis therapy, but much innovation is needed before we achieve a smart dialysis machine able to analyze and understand changes in patient homeostasis and to respond appropriately in real time. Great efforts are being made in the fields of tissue engineering and regenerative medicine to provide alternative cell-based approaches for the treatment of renal failure, including bioartificial renal systems and the implantation of bioengineered kidney constructs.

摘要

背景

肾移植是慢性肾脏病(CKD)患者的首选治疗方法,但肾脏短缺以及这些患者所患的致残性疾病使得透析对大多数患者来说至关重要。由于透析会极大地影响患者的生活方式,人们对可穿戴人工肾的发展寄予厚望,尽管目前其使用因对安全性的重大担忧而受阻。另一方面,血流动力学不稳定的透析患者通常无法耐受间歇性透析治疗,因为他们无法适应不可预见事件不断变化的情况。因此,新型可穿戴透析设备的开发以及临床耐受性的提高将需要人工智能(AI)和机器学习(ML)等新工程分支的贡献,以便对设备警报、透析参数和患者相关数据进行实时分析并做出实时反馈响应。这些技术具有通常与人类智能相关的能力,如学习、解决问题、人类语音理解或规划与决策。AI的常见应用示例包括视觉感知(计算机视觉)、语音识别和语言翻译。在本综述中,我们讨论了透析领域的最新进展以及AI在人工肾开发中的应用挑战。

总结与关键信息

源自AI、ML、电子学和机器人技术的新兴技术将为透析治疗提供巨大机遇,但在我们实现一台能够分析和理解患者体内平衡变化并实时做出适当反应的智能透析机之前,仍需要大量创新。组织工程和再生医学领域正在做出巨大努力,以提供基于细胞的替代方法来治疗肾衰竭,包括生物人工肾系统和生物工程肾构建体的植入。

相似文献

1
Progress in the Development and Challenges for the Use of Artificial Kidneys and Wearable Dialysis Devices.
Kidney Dis (Basel). 2019 Feb;5(1):3-10. doi: 10.1159/000492932. Epub 2018 Oct 10.
2
Artificial Intelligence for the Artificial Kidney: Pointers to the Future of a Personalized Hemodialysis Therapy.
Kidney Dis (Basel). 2018 Feb;4(1):1-9. doi: 10.1159/000486394. Epub 2018 Jan 25.
3
Innovations in Wearable and Implantable Artificial Kidneys.
Am J Kidney Dis. 2018 Nov;72(5):745-751. doi: 10.1053/j.ajkd.2018.06.005. Epub 2018 Aug 23.
4
Artificial intelligence: A joint narrative on potential use in pediatric stem and immune cell therapies and regenerative medicine.
Transfus Apher Sci. 2018 Jun;57(3):422-424. doi: 10.1016/j.transci.2018.05.004. Epub 2018 May 9.
5
Artificial intelligence: Implications for the future of work.
Am J Ind Med. 2019 Nov;62(11):917-926. doi: 10.1002/ajim.23037. Epub 2019 Aug 22.
6
Bioartificial Kidneys.
Curr Stem Cell Rep. 2017 Jun;3(2):68-76. doi: 10.1007/s40778-017-0079-3. Epub 2017 Apr 12.
7
Precision Dialysis: Leveraging Big Data and Artificial Intelligence.
Kidney Med. 2024 Jul 14;6(9):100868. doi: 10.1016/j.xkme.2024.100868. eCollection 2024 Sep.
8
Application of artificial intelligence in wearable devices: Opportunities and challenges.
Comput Methods Programs Biomed. 2022 Jan;213:106541. doi: 10.1016/j.cmpb.2021.106541. Epub 2021 Nov 17.
9
Portable, wearable and implantable artificial kidney systems: needs, opportunities and challenges.
Nat Rev Nephrol. 2023 Aug;19(8):481-490. doi: 10.1038/s41581-023-00726-9. Epub 2023 Jun 5.

引用本文的文献

2
Artificial Intelligence in the Intensive Care Unit: Current Evidence on an Inevitable Future Tool.
Cureus. 2024 May 7;16(5):e59797. doi: 10.7759/cureus.59797. eCollection 2024 May.
4
Drug-Induced Nephrotoxicity Assessment in 3D Cellular Models.
Micromachines (Basel). 2021 Dec 21;13(1):3. doi: 10.3390/mi13010003.
5
The Roles of Membrane Technology in Artificial Organs: Current Challenges and Perspectives.
Membranes (Basel). 2021 Mar 28;11(4):239. doi: 10.3390/membranes11040239.
6
Anemia management for home dialysis including the new US public policy initiative.
Kidney Int Suppl (2011). 2021 Apr;11(1):59-69. doi: 10.1016/j.kisu.2020.12.005. Epub 2021 Mar 18.
7
Using Artificial Intelligence Resources in Dialysis and Kidney Transplant Patients: A Literature Review.
Biomed Res Int. 2020 Jun 10;2020:9867872. doi: 10.1155/2020/9867872. eCollection 2020.
8
Role of Artificial Intelligence in Kidney Disease.
Int J Med Sci. 2020 Apr 6;17(7):970-984. doi: 10.7150/ijms.42078. eCollection 2020.
9
Fluid and hemodynamic management in hemodialysis patients: challenges and opportunities.
J Bras Nefrol. 2019 Oct-Dec;41(4):550-559. doi: 10.1590/2175-8239-JBN-2019-0135.
10
Artificial Intelligence and Dialysis.
Kidney Dis (Basel). 2019 Feb;5(1):1-2. doi: 10.1159/000493933. Epub 2018 Oct 9.

本文引用的文献

1
3D bioprinting for biomedical devices and tissue engineering: A review of recent trends and advances.
Bioact Mater. 2018 Feb 20;3(2):144-156. doi: 10.1016/j.bioactmat.2017.11.008. eCollection 2018 Jun.
2
Artificial Intelligence for the Artificial Kidney: Pointers to the Future of a Personalized Hemodialysis Therapy.
Kidney Dis (Basel). 2018 Feb;4(1):1-9. doi: 10.1159/000486394. Epub 2018 Jan 25.
3
Generation of Functioning Nephrons by Implanting Human Pluripotent Stem Cell-Derived Kidney Progenitors.
Stem Cell Reports. 2018 Mar 13;10(3):766-779. doi: 10.1016/j.stemcr.2018.01.008. Epub 2018 Feb 8.
4
Original article submission: Platelet stress accumulation analysis to predict thrombogenicity of an artificial kidney.
J Biomech. 2018 Mar 1;69:26-33. doi: 10.1016/j.jbiomech.2018.01.014. Epub 2018 Jan 16.
5
CKD Screening and Surveillance in Australia: Past, Present, and Future.
Kidney Int Rep. 2017 Oct 6;3(1):36-46. doi: 10.1016/j.ekir.2017.09.012. eCollection 2018 Jan.
6
Google DeepMind and healthcare in an age of algorithms.
Health Technol (Berl). 2017;7(4):351-367. doi: 10.1007/s12553-017-0179-1. Epub 2017 Mar 16.
8
The DeepMind debacle demands dialogue on data.
Nature. 2017 Jul 19;547(7663):259. doi: 10.1038/547259a.
9
Improving Dialysis Adherence for High Risk Patients Using Automated Messaging: Proof of Concept.
Sci Rep. 2017 Jun 23;7(1):4177. doi: 10.1038/s41598-017-03184-z.
10
Application of genetic algorithm for hemodialysis schedule optimization.
Comput Methods Programs Biomed. 2017 Jul;145:35-43. doi: 10.1016/j.cmpb.2017.04.003. Epub 2017 Apr 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验