Suppr超能文献

基于比色条码组合学和深度卷积神经网络的便携式食品新鲜度预测平台。

Portable Food-Freshness Prediction Platform Based on Colorimetric Barcode Combinatorics and Deep Convolutional Neural Networks.

机构信息

International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Technology, and School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu Province, 214122, P. R. China.

Innovative Center for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore.

出版信息

Adv Mater. 2020 Nov;32(45):e2004805. doi: 10.1002/adma.202004805. Epub 2020 Oct 1.

Abstract

Artificial scent screening systems (known as electronic noses, E-noses) have been researched extensively. A portable, automatic, and accurate, real-time E-nose requires both robust cross-reactive sensing and fingerprint pattern recognition. Few E-noses have been commercialized because they suffer from either sensing or pattern-recognition issues. Here, cross-reactive colorimetric barcode combinatorics and deep convolutional neural networks (DCNNs) are combined to form a system for monitoring meat freshness that concurrently provides scent fingerprint and fingerprint recognition. The barcodes-comprising 20 different types of porous nanocomposites of chitosan, dye, and cellulose acetate-form scent fingerprints that are identifiable by DCNN. A fully supervised DCNN trained using 3475 labeled barcode images predicts meat freshness with an overall accuracy of 98.5%. Incorporating DCNN into a smartphone application forms a simple platform for rapid barcode scanning and identification of food freshness in real time. The system is fast, accurate, and non-destructive, enabling consumers and all stakeholders in the food supply chain to monitor food freshness.

摘要

人工香味筛选系统(称为电子鼻,E-nose)已经得到了广泛的研究。一个便携、自动和准确的实时 E-nose 需要强大的交叉反应传感和指纹模式识别。由于传感或模式识别问题,很少有 E-nose 实现商业化。在这里,交叉反应比色条码组合和深度卷积神经网络(DCNN)结合在一起,形成了一个用于监测肉类新鲜度的系统,该系统同时提供香味指纹和指纹识别。这些条形码由 20 种不同类型的壳聚糖、染料和醋酸纤维素的多孔纳米复合材料组成,形成可通过 DCNN 识别的香味指纹。使用 3475 个标记的条码图像进行的完全监督 DCNN 训练可以以 98.5%的整体准确性预测肉类的新鲜度。将 DCNN 纳入智能手机应用程序中,形成了一个用于实时快速扫描条码和识别食品新鲜度的简单平台。该系统快速、准确且无损,使消费者和食品供应链中的所有利益相关者都能够监测食品的新鲜度。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验