Department of Biology at the Howard University, 415 College St. NW, Washington, DC 20059.
Howard University College of Medicine, 520 W Street NW, Washington, DC 20059.
Brief Bioinform. 2021 Mar 22;22(2):1239-1253. doi: 10.1093/bib/bbaa233.
The spike (S) glycoprotein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for the binding to the permissive cells. The receptor-binding domain (RBD) of SARS-CoV-2 S protein directly interacts with the human angiotensin-converting enzyme 2 (ACE2) on the host cell membrane. In this study, we used computational saturation mutagenesis approaches, including structure-based energy calculations and sequence-based pathogenicity predictions, to quantify the systemic effects of missense mutations on SARS-CoV-2 S protein structure and function. A total of 18 354 mutations in S protein were analyzed, and we discovered that most of these mutations could destabilize the entire S protein and its RBD. Specifically, residues G431 and S514 in SARS-CoV-2 RBD are important for S protein stability. We analyzed 384 experimentally verified S missense variations and revealed that the dominant pandemic form, D614G, can stabilize the entire S protein. Moreover, many mutations in N-linked glycosylation sites can increase the stability of the S protein. In addition, we investigated 3705 mutations in SARS-CoV-2 RBD and 11 324 mutations in human ACE2 and found that SARS-CoV-2 neighbor residues G496 and F497 and ACE2 residues D355 and Y41 are critical for the RBD-ACE2 interaction. The findings comprehensively provide potential target sites in the development of drugs and vaccines against COVID-19.
严重急性呼吸综合征冠状病毒 2(SARS-CoV-2)的刺突(S)糖蛋白负责与允许的细胞结合。SARS-CoV-2 S 蛋白的受体结合域(RBD)直接与宿主细胞膜上的人血管紧张素转换酶 2(ACE2)相互作用。在这项研究中,我们使用了计算饱和诱变方法,包括基于结构的能量计算和基于序列的致病性预测,来量化错义突变对 SARS-CoV-2 S 蛋白结构和功能的系统影响。分析了 S 蛋白中的 18354 个突变,我们发现这些突变中的大多数都可以使整个 S 蛋白及其 RBD 失稳。具体来说,SARS-CoV-2 RBD 中的残基 G431 和 S514 对 S 蛋白稳定性很重要。我们分析了 384 个经过实验验证的 S 错义变异,并揭示了主要的流行形式 D614G 可以稳定整个 S 蛋白。此外,许多 N 连接糖基化位点的突变可以增加 S 蛋白的稳定性。此外,我们研究了 SARS-CoV-2 RBD 中的 3705 个突变和人类 ACE2 中的 11324 个突变,发现 SARS-CoV-2 附近的残基 G496 和 F497 以及 ACE2 残基 D355 和 Y41 对于 RBD-ACE2 相互作用很关键。这些发现全面提供了针对 COVID-19 的药物和疫苗开发的潜在靶标。