Suppr超能文献

应激颗粒组装和拆卸的分子机制。

Molecular mechanisms of stress granule assembly and disassembly.

机构信息

Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.

Brigham and Women's Hospital, Harvard Medical School, Harvard Initiative for RNA Medicine, Boston, MA 02115, USA.

出版信息

Biochim Biophys Acta Mol Cell Res. 2021 Jan;1868(1):118876. doi: 10.1016/j.bbamcr.2020.118876. Epub 2020 Sep 29.

Abstract

Stress granules (SGs) are membrane-less ribonucleoprotein (RNP)-based cellular compartments that form in the cytoplasm of a cell upon exposure to various environmental stressors. SGs contain a large set of proteins, as well as mRNAs that have been stalled in translation as a result of stress-induced polysome disassembly. Despite the fact that SGs have been extensively studied for many years, their function is still not clear. They presumably help the cell to cope with the encountered stress, and facilitate the recovery process after stress removal upon which SGs disassemble. Aberrant formation of SGs and impaired SG disassembly majorly contribute to various pathological phenomena in cancer, viral infections, and neurodegeneration. The assembly of SGs is largely driven by liquid-liquid phase separation (LLPS), however, the molecular mechanisms behind that are not fully understood. Recent studies have proposed a novel mechanism for SG formation that involves the interplay of a large interaction network of mRNAs and proteins. Here, we review this novel concept of SG assembly, and discuss the current insights into SG disassembly.

摘要

应激颗粒(SGs)是一种无膜的核糖核蛋白(RNP)基细胞区室,在细胞暴露于各种环境应激源时在细胞质中形成。SGs 包含大量的蛋白质,以及由于应激诱导的多核糖体解体而停滞翻译的 mRNA。尽管 SG 已经被广泛研究了很多年,但它们的功能仍然不清楚。它们可能有助于细胞应对所遇到的压力,并在压力消除后促进恢复过程,此时 SG 会解体。SG 的异常形成和 SG 解体的受损主要导致癌症、病毒感染和神经退行性变中的各种病理现象。SG 的组装主要是由液-液相分离(LLPS)驱动的,然而,其背后的分子机制尚不完全清楚。最近的研究提出了一种新的 SG 形成机制,涉及到 mRNA 和蛋白质的大量相互作用网络的相互作用。在这里,我们回顾了 SG 组装的这一新概念,并讨论了目前对 SG 解体的见解。

相似文献

1
Molecular mechanisms of stress granule assembly and disassembly.应激颗粒组装和拆卸的分子机制。
Biochim Biophys Acta Mol Cell Res. 2021 Jan;1868(1):118876. doi: 10.1016/j.bbamcr.2020.118876. Epub 2020 Sep 29.
2
Mammalian stress granules and P bodies at a glance.哺乳动物应激颗粒和 P 体一览
J Cell Sci. 2020 Sep 1;133(16):jcs242487. doi: 10.1242/jcs.242487.
3
Stress granule subtypes: an emerging link to neurodegeneration.应激颗粒亚型:与神经退行性变的新关联。
Cell Mol Life Sci. 2020 Dec;77(23):4827-4845. doi: 10.1007/s00018-020-03565-0. Epub 2020 Jun 4.

引用本文的文献

3
Multi-Faceted Roles of Stress Granules in Viral Infection.应激颗粒在病毒感染中的多方面作用
Microorganisms. 2025 Jun 20;13(7):1434. doi: 10.3390/microorganisms13071434.
5
Editorial: Survival strategies: cellular responses to stress and damage.社论:生存策略:细胞对应激和损伤的反应
Front Cell Dev Biol. 2025 Jun 19;13:1630652. doi: 10.3389/fcell.2025.1630652. eCollection 2025.
7
Assembly and disassembly of stress granules in kidney diseases.肾脏疾病中应激颗粒的组装与解聚
iScience. 2025 May 24;28(6):112578. doi: 10.1016/j.isci.2025.112578. eCollection 2025 Jun 20.
9
A molecular cartographer's toolkit for mapping RNA's uncharted realms.用于绘制RNA未知领域的分子制图师工具包。
Cell Rep. 2025 Jul 22;44(7):115877. doi: 10.1016/j.celrep.2025.115877. Epub 2025 Jun 19.

本文引用的文献

3
Mammalian stress granules and P bodies at a glance.哺乳动物应激颗粒和 P 体一览
J Cell Sci. 2020 Sep 1;133(16):jcs242487. doi: 10.1242/jcs.242487.
6
mA-binding YTHDF proteins promote stress granule formation.mA 结合 YTHDF 蛋白促进应激颗粒形成。
Nat Chem Biol. 2020 Sep;16(9):955-963. doi: 10.1038/s41589-020-0524-y. Epub 2020 May 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验