Suppr超能文献

使用脑电 raw EEG 模式和心搏骤停患者额部 EEG 频谱图进行神经预后判断。

Neurological Prognostication Using Raw EEG Patterns and Spectrograms of Frontal EEG in Cardiac Arrest Patients.

机构信息

Department of Emergency Medicine, Ulsan University College of Medicine, Ulsan, Korea; and.

Departments of Emergency Medicine and.

出版信息

J Clin Neurophysiol. 2022 Jul 1;39(5):427-433. doi: 10.1097/WNP.0000000000000787. Epub 2020 Sep 28.

Abstract

PURPOSE

We investigated which raw EEG and spectrogram patterns in frontal EEG predict poor neurological outcomes in patients with hypoxic ischemic encephalopathy after cardiac arrest.

METHODS

This multicenter, prospective, observational study included 52 patients with anoxic brain injury after cardiac arrest. Raw EEGs and spectrograms (color density spectral arrays) measured with hardwired frontal EEG monitoring were used to predict poor prognosis. Neurological variables upon admission, raw EEG patterns, including highly malignant and malignant EEG patterns, and changes in frequency and amplitude from color density spectral arrays were investigated.

RESULTS

All patients exhibiting highly malignant EEG patterns died, and malignant EEG patterns were significant predictors of poor prognosis as the area under the receiver operating characteristic curve was 0.83 to 0.86. Irregular high-voltage waves in the high-frequency beta band in continuous background EEGs were associated with poor prognosis ( P = 0.022). Malignant EEG patterns including high-voltage and high-frequency beta waves were significantly stronger predictors of poor prognosis than the absence of ventricular fibrillation and pupil reflex, delayed length of anoxic time, and lower Glasgow coma scale score (odds ratio, 9; P = 0.035). Compared with prognostication using malignant EEG patterns alone, the area under the receiver operating characteristic curve of results incorporating high-voltage and high-frequency beta waves was 0.84 (vs. 0.83) at day 1, 0.88 (vs. 0.85) at day 2, 0.92 (vs. 0.86) at day 3, and 0.99 (vs. 0.86) at day 4.

CONCLUSIONS

Frontal EEG monitoring is useful for predicting poor neurological outcomes. Brain function monitoring using both raw EEG patterns and color density spectral arrays is more helpful for predicting poor prognosis than raw EEG alone.

摘要

目的

我们研究了在心脏骤停后发生缺氧缺血性脑病的患者中,额部原始脑电图和频谱图模式中哪些可以预测不良神经结局。

方法

这项多中心、前瞻性、观察性研究纳入了 52 例心脏骤停后发生缺氧性脑损伤的患者。使用硬连线额部脑电图监测测量的原始脑电图和频谱图(彩色密度频谱数组)用于预测不良预后。研究了入院时的神经学变量、原始脑电图模式,包括高度恶性和恶性脑电图模式,以及从彩色密度频谱数组中得出的频率和幅度的变化。

结果

所有表现出高度恶性脑电图模式的患者均死亡,恶性脑电图模式是不良预后的显著预测因子,因为其受试者工作特征曲线下面积为 0.83 至 0.86。连续背景脑电图中高频β波段的不规则高电压波与不良预后相关(P=0.022)。包括高电压和高频β波在内的恶性脑电图模式与不良预后的相关性明显强于无室颤和瞳孔反射、缺氧时间延长、格拉斯哥昏迷量表评分降低(比值比,9;P=0.035)。与仅使用恶性脑电图模式进行预测相比,纳入高电压和高频β波后的受试者工作特征曲线下面积在第 1 天为 0.84(vs. 0.83),第 2 天为 0.88(vs. 0.85),第 3 天为 0.92(vs. 0.86),第 4 天为 0.99(vs. 0.86)。

结论

额部脑电图监测有助于预测不良神经结局。使用原始脑电图模式和彩色密度频谱数组进行脑功能监测,比单独使用原始脑电图预测不良预后更有帮助。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验