Suppr超能文献

一项关于 SARS-CoV-2 患者的荟萃分析确定了 D-二聚体、C 反应蛋白、淋巴细胞和中性粒细胞值的组合意义,作为疾病严重程度的预测指标。

A meta-analysis of SARS-CoV-2 patients identifies the combinatorial significance of D-dimer, C-reactive protein, lymphocyte, and neutrophil values as a predictor of disease severity.

机构信息

Department of Pathology, Stanford University, Stanford, CA, USA.

Department of Pathology, University of California, San Francisco, San Francisco, CA, USA.

出版信息

Int J Lab Hematol. 2021 Apr;43(2):324-328. doi: 10.1111/ijlh.13354. Epub 2020 Oct 3.

Abstract

BACKGROUND

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), known to be the causative agent of COVID-19, has led to a worldwide pandemic. At presentation, individual clinical laboratory blood values, such as lymphocyte counts or C-reactive protein (CRP) levels, may be abnormal and associated with disease severity. However, combinatorial interpretation of these laboratory blood values, in the context of COVID-19, remains a challenge.

METHODS

To assess the significance of multiple laboratory blood values in patients with SARS-CoV-2 and develop a COVID-19 predictive equation, we conducted a literature search using PubMed to seek articles that included defined laboratory data points along with clinical disease progression. We identified 9846 papers, selecting primary studies with at least 20 patients for univariate analysis to identify clinical variables predicting nonsevere and severe COVID-19 cases. Multiple regression analysis was performed on a training set of patient studies to generate severity predictor equations, and subsequently tested on a validation cohort of 151 patients who had a median duration of observation of 14 days.

RESULTS

Two COVID-19 predictive equations were generated: one using four variables (CRP, D-dimer levels, lymphocyte count, and neutrophil count), and another using three variables (CRP, lymphocyte count, and neutrophil count). In adult and pediatric populations, the predictive equations exhibited high specificity, sensitivity, positive predictive values, and negative predictive values.

CONCLUSION

Using the generated equations, the outcomes of COVID-19 patients can be predicted using commonly obtained clinical laboratory data. These predictive equations may inform future studies evaluating the long-term follow-up of COVID-19 patients.

摘要

背景

严重急性呼吸综合征冠状病毒 2(SARS-CoV-2),已知是 COVID-19 的病原体,已导致全球大流行。在出现时,个体临床实验室血液值,如淋巴细胞计数或 C 反应蛋白(CRP)水平,可能异常并与疾病严重程度相关。然而,在 COVID-19 背景下,这些实验室血液值的综合解释仍然是一个挑战。

方法

为了评估 SARS-CoV-2 患者的多个实验室血液值的意义并开发 COVID-19 预测方程,我们使用 PubMed 进行了文献检索,以寻找包含定义明确的实验室数据点以及临床疾病进展的文章。我们确定了 9846 篇论文,选择了至少有 20 名患者的原始研究进行单变量分析,以确定预测非重症和重症 COVID-19 病例的临床变量。对患者研究的训练集进行多元回归分析以生成严重程度预测方程,然后在 151 名患者的验证队列上进行测试,这些患者的中位观察时间为 14 天。

结果

生成了两个 COVID-19 预测方程:一个使用四个变量(CRP、D-二聚体水平、淋巴细胞计数和中性粒细胞计数),另一个使用三个变量(CRP、淋巴细胞计数和中性粒细胞计数)。在成人和儿科人群中,预测方程表现出高特异性、敏感性、阳性预测值和阴性预测值。

结论

使用生成的方程,可以使用通常获得的临床实验室数据预测 COVID-19 患者的结局。这些预测方程可能为评估 COVID-19 患者的长期随访的未来研究提供信息。

相似文献

8
IL-6-based mortality risk model for hospitalized patients with COVID-19.基于 IL-6 的 COVID-19 住院患者死亡风险模型。
J Allergy Clin Immunol. 2020 Oct;146(4):799-807.e9. doi: 10.1016/j.jaci.2020.07.009. Epub 2020 Jul 22.

引用本文的文献

4
The Saga of COVID-19 in Chronic Lung Disease: History Repeats Itself.慢性肺病中的新冠传奇:历史重演。
Ann Am Thorac Soc. 2024 Jul;21(7):1001-1002. doi: 10.1513/AnnalsATS.202404-442ED.
6
Immunometabolic interference between cancer and COVID-19.癌症与 COVID-19 之间的免疫代谢干扰。
Front Immunol. 2023 Mar 29;14:1168455. doi: 10.3389/fimmu.2023.1168455. eCollection 2023.

本文引用的文献

10
Complex Immune Dysregulation in COVID-19 Patients with Severe Respiratory Failure.COVID-19 患者严重呼吸衰竭的复杂免疫失调。
Cell Host Microbe. 2020 Jun 10;27(6):992-1000.e3. doi: 10.1016/j.chom.2020.04.009. Epub 2020 Apr 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验