Suppr超能文献

DNA 计算机的数据存储和检索编码方案。

Encoding scheme for data storage and retrieval on DNA computers.

机构信息

Department of Computer Science and Engineering, School of Engineering, Shiv Nadar University NCR, India.

Amity Institute of Nanotechnology, Noida, Amity University Uttar Pradesh, India.

出版信息

IET Nanobiotechnol. 2020 Sep;14(7):635-641. doi: 10.1049/iet-nbt.2020.0157.

Abstract

There has been exponential growth in the amount of data being generated on a daily basis. Such a huge amount of data creates a need for efficient data storage techniques. Due to the limitations of existing storage media, new storage solutions have always been of interest. There have been recent developments in order to efficiently use synthetic deoxyribonucleic acid (DNA) for information storage. DNA storage has attracted researchers because of its extremely high data storage density, about 1 exabyte/mm and long life under easily achievable conditions. This work presents an encoding scheme for DNA-based data storage system with controllable redundancy and reliability, the authors have also talked about the feasibility of the proposed method. The authors have also analysed the proposed algorithm for time and space complexity. The proposed encoding scheme tries to minimise the bases per letter ratio while controlling the redundancy. They have experimented with three different types of data with a value of redundancy as 0.75. In the randomised simulation setup, it was observed that the proposed algorithm was able to correctly retrieve the stored data in our experiments about 94% of the time. In the situation, where redundancy was increased to 1, the authors were able to retrieve all the information correctly in the proposed experiments.

摘要

每天生成的数据量呈指数级增长。如此大量的数据需要高效的数据存储技术。由于现有存储介质的限制,新的存储解决方案一直受到关注。最近已经开发出了一些方法,以便有效地利用合成脱氧核糖核酸(DNA)进行信息存储。由于其极高的数据存储密度(约为 1 艾字节/毫米)和在易于实现的条件下的长寿命,DNA 存储吸引了研究人员的注意。这项工作提出了一种具有可控冗余和可靠性的基于 DNA 的数据存储系统的编码方案,作者还讨论了该方法的可行性。作者还分析了所提出算法的时间和空间复杂度。所提出的编码方案试图在控制冗余的同时最小化每个字母的碱基比。他们用三种不同类型的数据进行了实验,冗余值为 0.75。在随机模拟设置中,观察到所提出的算法能够在大约 94%的时间内正确地检索存储的数据。在冗余增加到 1 的情况下,作者能够在提出的实验中正确地检索所有信息。

相似文献

2
High Net Information Density DNA Data Storage by the MOPE Encoding Algorithm.基于MOPE编码算法的高净信息密度DNA数据存储
IEEE/ACM Trans Comput Biol Bioinform. 2023 Sep-Oct;20(5):2992-3000. doi: 10.1109/TCBB.2023.3263521. Epub 2023 Oct 9.
3
HD-Code: End-to-End High Density Code for DNA Storage.HD-Code:用于 DNA 存储的端到端高密度编码。
IEEE Trans Nanobioscience. 2021 Oct;20(4):455-463. doi: 10.1109/TNB.2021.3102122. Epub 2021 Sep 30.
7
DeSP: a systematic DNA storage error simulation pipeline.DeSP:一种系统的 DNA 存储错误模拟管道。
BMC Bioinformatics. 2022 May 17;23(1):185. doi: 10.1186/s12859-022-04723-w.
8
Retrieval efficiency of DNA-based databases of digital signals.基于数字信号的 DNA 数据库的检索效率。
IEEE Trans Nanobioscience. 2009 Sep;8(3):259-70. doi: 10.1109/TNB.2009.2026371. Epub 2009 Jul 10.

本文引用的文献

6
Medical Internet of Things and Big Data in Healthcare.医疗保健中的医学物联网与大数据
Healthc Inform Res. 2016 Jul;22(3):156-63. doi: 10.4258/hir.2016.22.3.156. Epub 2016 Jul 31.
7
Big data analytics in healthcare: promise and potential.医疗保健中的大数据分析:前景与潜力。
Health Inf Sci Syst. 2014 Feb 7;2:3. doi: 10.1186/2047-2501-2-3. eCollection 2014.
10
Next-generation digital information storage in DNA.DNA 中的下一代数字信息存储。
Science. 2012 Sep 28;337(6102):1628. doi: 10.1126/science.1226355. Epub 2012 Aug 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验