Suppr超能文献

BiG-FAM:生物合成基因簇家族数据库。

BiG-FAM: the biosynthetic gene cluster families database.

机构信息

Bioinformatics Group, Wageningen University, 6708PB Wageningen, The Netherlands.

The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark.

出版信息

Nucleic Acids Res. 2021 Jan 8;49(D1):D490-D497. doi: 10.1093/nar/gkaa812.

Abstract

Computational analysis of biosynthetic gene clusters (BGCs) has revolutionized natural product discovery by enabling the rapid investigation of secondary metabolic potential within microbial genome sequences. Grouping homologous BGCs into Gene Cluster Families (GCFs) facilitates mapping their architectural and taxonomic diversity and provides insights into the novelty of putative BGCs, through dereplication with BGCs of known function. While multiple databases exist for exploring BGCs from publicly available data, no public resources exist that focus on GCF relationships. Here, we present BiG-FAM, a database of 29,955 GCFs capturing the global diversity of 1,225,071 BGCs predicted from 209,206 publicly available microbial genomes and metagenome-assembled genomes (MAGs). The database offers rich functionalities, such as multi-criterion GCF searches, direct links to BGC databases such as antiSMASH-DB, and rapid GCF annotation of user-supplied BGCs from antiSMASH results. BiG-FAM can be accessed online at https://bigfam.bioinformatics.nl.

摘要

生物合成基因簇(BGCs)的计算分析通过快速研究微生物基因组序列中的次级代谢潜能,彻底改变了天然产物的发现。将同源 BGC 分组为基因簇家族(GCF)有助于绘制它们的结构和分类多样性,并通过与具有已知功能的 BGC 去重复,深入了解假定 BGC 的新颖性。虽然有多个数据库可用于探索公开数据中的 BGC,但没有专门关注 GCF 关系的公共资源。在这里,我们展示了 BiG-FAM,这是一个包含 29,955 个 GCF 的数据库,涵盖了从 209,206 个公开微生物基因组和宏基因组组装基因组 (MAG) 中预测的 1,225,071 个 BGC 的全球多样性。该数据库提供了丰富的功能,例如多标准 GCF 搜索、与 antiSMASH-DB 等 BGC 数据库的直接链接,以及对用户从 antiSMASH 结果提供的 BGC 进行快速 GCF 注释。BiG-FAM 可在线访问,网址为 https://bigfam.bioinformatics.nl。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/547d/7778980/30caf1d68017/gkaa812gra1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验