Suppr超能文献

通过高效的 CRISPR 系统对竹黄进行模块化工程改造以生产血卟啉

Modular engineering of Shiraia bambusicola for hypocrellin production through an efficient CRISPR system.

机构信息

The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.

The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.

出版信息

Int J Biol Macromol. 2020 Dec 15;165(Pt A):796-803. doi: 10.1016/j.ijbiomac.2020.09.208. Epub 2020 Sep 30.

Abstract

Shiraia bambusicola exhibits an excellent capability to produce high-value pharmacological drugs, such as hypocrellin. However, less effective molecular tools hamper the processes to discover or exploit these metabolites. To address this issue, the more effective CRISPR/Cas9 system was constructed by optimizing the sgRNA transcription elements and disrupting the endogenous non-homologous end-joining pathway. These tactics prompted the gene-targeting frequency of 100% and simultaneously multiplex genome editing in S. bambusicola. This optimal CRISPR system encouraged us to rewire the entire hypocrellin flux and improve the yield by orchestrating the substrate pool supply, the central hypocrellin pathway, and the antioxidant system. Thus, 8632 mg/L hypocrellin was obtained, resulting in a 12-fold increase than that of the wild-type strain. This engineered S. bambusicola can still endure oxidative stresses from higher target metabolites and sustain an excellent biological activity. This study provides a whole conception to establish the more efficient genome-editing system. Higher conserved transcription elements for sgRNA expressions inspire us to adopt this system for gene modifications of other filamentous fungi. The rational and global biosystems outline will offer guidance to modulate metabolite productivity in other filamentous fungi.

摘要

竹黄表现出产生高价值药理药物(如竹红菌素)的出色能力。然而,低效的分子工具阻碍了发现或利用这些代谢物的进程。为了解决这个问题,通过优化 sgRNA 转录元件和破坏内源性非同源末端连接途径,构建了更有效的 CRISPR/Cas9 系统。这些策略促使基因靶向频率达到 100%,并同时在 S. bambusicola 中进行多重基因组编辑。这个优化的 CRISPR 系统鼓励我们重新布线整个竹红菌素通量,并通过协调底物池供应、中央竹红菌素途径和抗氧化系统来提高产量。因此,获得了 8632mg/L 的竹红菌素,比野生型菌株提高了 12 倍。这种工程化的 S. bambusicola 仍然能够承受来自更高目标代谢物的氧化应激,并保持出色的生物活性。这项研究提供了建立更高效基因组编辑系统的整体概念。更高保守的 sgRNA 表达转录元件激励我们将该系统应用于其他丝状真菌的基因修饰。合理的全局生物系统概述将为调节其他丝状真菌代谢产物的生产力提供指导。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验