Suppr超能文献

从人类脑电图中检测急性疼痛信号。

Detecting acute pain signals from human EEG.

作者信息

Sun Guanghao, Wen Zhenfu, Ok Deborah, Doan Lisa, Wang Jing, Chen Zhe Sage

机构信息

Department of Psychiatry, New York University School of Medicine, New York, NY, United States.

Department of Anesthesiology, Perioperative Care, and Pain Medicine, New York University School of Medicine, New York, NY, United States.

出版信息

J Neurosci Methods. 2021 Jan 1;347:108964. doi: 10.1016/j.jneumeth.2020.108964. Epub 2020 Sep 30.

Abstract

BACKGROUND

Advances in human neuroimaging has enabled us to study functional connections among various brain regions in pain states. Despite a wealth of studies at high anatomic resolution, the exact neural signals for the timing of pain remain little known. Identifying the onset of pain signals from distributed cortical circuits may reveal the temporal dynamics of pain responses and subsequently provide important feedback for closed-loop neuromodulation for pain.

NEW METHOD

Here we developed an unsupervised learning method for sequential detection of acute pain signals based on multichannel human EEG recordings. Following EEG source localization, we used a state-space model (SSM) to detect the onset of acute pain signals based on the localized regions of interest (ROIs).

RESULTS

We validated the SSM-based detection strategy using two human EEG datasets, including one public EEG recordings of 50 subjects. We found that the detection accuracy varied across tested subjects and detection methods. We also demonstrated the feasibility for cross-subject and cross-modality prediction of detecting the acute pain signals.

COMPARISON WITH EXISTING METHODS

In contrast to the batch supervised learning analysis based on a support vector machine (SVM) classifier, the unsupervised learning method requires fewer number of training trials in the online experiment, and shows comparable or improved performance than the supervised method.

CONCLUSIONS

Our unsupervised SSM-based method combined with EEG source localization showed robust performance in detecting the onset of acute pain signals.

摘要

背景

人类神经影像学的进展使我们能够研究疼痛状态下不同脑区之间的功能连接。尽管有大量高解剖分辨率的研究,但疼痛发生时间的确切神经信号仍鲜为人知。从分布式皮层回路中识别疼痛信号的起始可能揭示疼痛反应的时间动态,并随后为疼痛的闭环神经调节提供重要反馈。

新方法

在此,我们基于多通道人类脑电图记录开发了一种用于顺序检测急性疼痛信号的无监督学习方法。在脑电图源定位之后,我们使用状态空间模型(SSM)基于感兴趣的局部区域(ROI)检测急性疼痛信号的起始。

结果

我们使用两个人类脑电图数据集验证了基于SSM的检测策略,其中包括一个50名受试者的公开脑电图记录。我们发现检测准确率因受试对象和检测方法而异。我们还展示了跨受试者和跨模态预测检测急性疼痛信号的可行性。

与现有方法的比较

与基于支持向量机(SVM)分类器的批量监督学习分析相比,无监督学习方法在在线实验中所需的训练试验次数更少,并且表现出与监督方法相当或更好的性能。

结论

我们基于SSM的无监督方法与脑电图源定位相结合,在检测急性疼痛信号的起始方面表现出强大的性能。

相似文献

1
Detecting acute pain signals from human EEG.
J Neurosci Methods. 2021 Jan 1;347:108964. doi: 10.1016/j.jneumeth.2020.108964. Epub 2020 Sep 30.
3
Exercise for intermittent claudication.
Cochrane Database Syst Rev. 2017 Dec 26;12(12):CD000990. doi: 10.1002/14651858.CD000990.pub4.
5
Algorithm-based pain management for people with dementia in nursing homes.
Cochrane Database Syst Rev. 2022 Apr 1;4(4):CD013339. doi: 10.1002/14651858.CD013339.pub2.
6
Longitudinal EEG-based assessment of neuroplasticity and adaptive responses to transcranial focused ultrasound stimulation.
J Neurosci Methods. 2025 Oct;422:110521. doi: 10.1016/j.jneumeth.2025.110521. Epub 2025 Jun 26.
8
Exercise for osteoarthritis of the knee.
Cochrane Database Syst Rev. 2015 Jan 9;1(1):CD004376. doi: 10.1002/14651858.CD004376.pub3.
10
Predicting cognitive decline: Deep-learning reveals subtle brain changes in pre-MCI stage.
J Prev Alzheimers Dis. 2025 May;12(5):100079. doi: 10.1016/j.tjpad.2025.100079. Epub 2025 Feb 6.

引用本文的文献

1
Disruptions in cortical circuit connectivity distinguish widespread hyperalgesia from localized pain.
Front Pain Res (Lausanne). 2025 Jun 20;6:1548500. doi: 10.3389/fpain.2025.1548500. eCollection 2025.
2
EEG Signal Processing Techniques and Applications-2nd Edition.
Sensors (Basel). 2025 Jan 29;25(3):805. doi: 10.3390/s25030805.
5
Brain-Computer Interface to Deliver Individualized Multisensory Intervention for Neuropathic Pain.
Neurotherapeutics. 2023 Sep;20(5):1316-1329. doi: 10.1007/s13311-023-01396-y. Epub 2023 Jul 5.
6
In search of a composite biomarker for chronic pain by way of EEG and machine learning: where do we currently stand?
Front Neurosci. 2023 Jun 14;17:1186418. doi: 10.3389/fnins.2023.1186418. eCollection 2023.
7
A systematic review of neurophysiological sensing for the assessment of acute pain.
NPJ Digit Med. 2023 Apr 26;6(1):76. doi: 10.1038/s41746-023-00810-1.
8
Cross-Platform Implementation of an SSVEP-Based BCI for the Control of a 6-DOF Robotic Arm.
Sensors (Basel). 2022 Jul 2;22(13):5000. doi: 10.3390/s22135000.
9
Closed-loop stimulation using a multiregion brain-machine interface has analgesic effects in rodents.
Sci Transl Med. 2022 Jun 29;14(651):eabm5868. doi: 10.1126/scitranslmed.abm5868.
10
Distinct spatio-temporal and spectral brain patterns for different thermal stimuli perception.
Sci Rep. 2022 Jan 18;12(1):919. doi: 10.1038/s41598-022-04831-w.

本文引用的文献

1
A prototype closed-loop brain-machine interface for the study and treatment of pain.
Nat Biomed Eng. 2023 Apr;7(4):533-545. doi: 10.1038/s41551-021-00736-7. Epub 2021 Jun 21.
2
Pain Control by Co-adaptive Learning in a Brain-Machine Interface.
Curr Biol. 2020 Oct 19;30(20):3935-3944.e7. doi: 10.1016/j.cub.2020.07.066. Epub 2020 Aug 13.
3
Discovery and validation of biomarkers to aid the development of safe and effective pain therapeutics: challenges and opportunities.
Nat Rev Neurol. 2020 Jul;16(7):381-400. doi: 10.1038/s41582-020-0362-2. Epub 2020 Jun 15.
5
Abnormal alpha band power in the dynamic pain connectome is a marker of chronic pain with a neuropathic component.
Neuroimage Clin. 2020;26:102241. doi: 10.1016/j.nicl.2020.102241. Epub 2020 Mar 13.
6
Granger causality analysis of rat cortical functional connectivity in pain.
J Neural Eng. 2020 Feb 7;17(1):016050. doi: 10.1088/1741-2552/ab6cba.
7
Neuroimaging-based biomarkers for pain: state of the field and current directions.
Pain Rep. 2019 Aug 7;4(4):e751. doi: 10.1097/PR9.0000000000000751. eCollection 2019 Jul-Aug.
8
Neural oscillations and connectivity characterizing the state of tonic experimental pain in humans.
Hum Brain Mapp. 2020 Jan;41(1):17-29. doi: 10.1002/hbm.24784. Epub 2019 Sep 9.
9
Cortical Pain Processing in the Rat Anterior Cingulate Cortex and Primary Somatosensory Cortex.
Front Cell Neurosci. 2019 Apr 24;13:165. doi: 10.3389/fncel.2019.00165. eCollection 2019.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验