Suppr超能文献

算法可以识别艾滋病毒感染者中的跨性别和非二元性别个体,但其表现因年龄和种族而异。

Algorithm to identify transgender and gender nonbinary individuals among people living with HIV performs differently by age and ethnicity.

机构信息

Division of General Internal Medicine, Department of Medicine, Montefiore Medical Center-Albert Einstein College of Medicine, Bronx, NY.

Division of General Internal Medicine, Department of Medicine, Montefiore Medical Center-Albert Einstein College of Medicine, Bronx, NY.

出版信息

Ann Epidemiol. 2021 Feb;54:73-78. doi: 10.1016/j.annepidem.2020.09.013. Epub 2020 Oct 1.

Abstract

PURPOSE

HIV research among transgender and gender nonbinary (TGNB) people is limited by lack of gender identity data collection. We designed an EHR-based algorithm to identify TGNB people among people living with HIV (PLWH) when gender identity was not systematically collected.

METHODS

We applied EHR-based search criteria to all PLWH receiving care at a large urban health system between 1997 and 2017, then confirmed gender identity by chart review. We compared patient characteristics by gender identity and screening criteria, then calculated positive predictive values for each criterion.

RESULTS

Among 18,086 PLWH, 213 (1.2%) met criteria as potential TGNB patients and 178/213 were confirmed. Positive predictive values were highest for free-text keywords (91.7%) and diagnosis codes (77.4%). Confirmed TGNB patients were younger (median 32.5 vs. 42.5 years, P < .001) and less likely to be Hispanic (37.1% vs. 62.9%, P = .03) than unconfirmed patients. Among confirmed patients, 15% met criteria only for prospective gender identity data collection and were significantly older.

CONCLUSION

EHR-based criteria can identify TGNB PLWH, but success may differ by ethnicity and age. Retrospective versus intentional, prospective gender identity data collection may capture different patients. To reduce misclassification in epidemiologic studies, gender identity data collection should address these potential differences and be systematic and prospective.

摘要

目的

由于缺乏性别认同数据收集,跨性别和非二元性别(TGNB)人群的 HIV 研究受到限制。我们设计了一种基于电子健康记录(EHR)的算法,用于在没有系统收集性别认同信息的情况下识别 HIV 感染者(PLWH)中的 TGNB 人群。

方法

我们应用基于 EHR 的搜索标准对 1997 年至 2017 年间在一家大型城市卫生系统接受治疗的所有 PLWH 进行了筛选,然后通过病历回顾来确认性别认同。我们比较了不同性别认同和筛选标准下的患者特征,然后计算了每个标准的阳性预测值。

结果

在 18086 名 PLWH 中,有 213 名(1.2%)符合潜在 TGNB 患者的标准,并对其中的 178 名进行了确认。基于自由文本关键词(91.7%)和诊断代码(77.4%)的阳性预测值最高。确认的 TGNB 患者年龄较小(中位数 32.5 岁比 42.5 岁,P < 0.001),且 Hispanic 裔比例较低(37.1%比 62.9%,P = 0.03)。在确认的患者中,15%仅符合前瞻性性别认同数据收集标准,且年龄明显更大。

结论

基于 EHR 的标准可以识别 TGNB PLWH,但成功与否可能因种族和年龄而异。回顾性与前瞻性、有意的性别认同数据收集可能会捕获不同的患者。为了减少流行病学研究中的错误分类,性别认同数据的收集应解决这些潜在差异,并应具有系统性和前瞻性。

相似文献

6
Gender Diverse Representation in Patient Simulation: A Scoping Review.患者模拟中的性别多样化呈现:范围综述。
Acad Med. 2022 Nov 1;97(11S):S107-S116. doi: 10.1097/ACM.0000000000004926. Epub 2022 Aug 9.

引用本文的文献

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验