Suppr超能文献

克服因可修正的面域单位问题对单一聚集疾病图的影响而产生的效率低下问题。

Overcoming inefficiencies arising due to the impact of the modifiable areal unit problem on single-aggregation disease maps.

机构信息

Medical School, University of Western Australia, Perth, Australia.

Department of Mathematics and Statistics, University of Western Australia, Perth, Australia.

出版信息

Int J Health Geogr. 2020 Oct 3;19(1):40. doi: 10.1186/s12942-020-00236-y.

Abstract

BACKGROUND

In disease mapping, fine-resolution spatial health data are routinely aggregated for various reasons, for example to protect privacy. Usually, such aggregation occurs only once, resulting in 'single-aggregation disease maps' whose representation of the underlying data depends on the chosen set of aggregation units. This dependence is described by the modifiable areal unit problem (MAUP). Despite an extensive literature, in practice, the MAUP is rarely acknowledged, including in disease mapping. Further, despite single-aggregation disease maps being widely relied upon to guide distribution of healthcare resources, potential inefficiencies arising due to the impact of the MAUP on such maps have not previously been investigated.

RESULTS

We introduce the overlay aggregation method (OAM) for disease mapping. This method avoids dependence on any single set of aggregate-level mapping units through incorporating information from many different sets. We characterise OAM as a novel smoothing technique and show how its use results in potentially dramatic improvements in resource allocation efficiency over single-aggregation maps. We demonstrate these findings in a simulation context and through applying OAM to a real-world dataset: ischaemic stroke hospital admissions in Perth, Western Australia, in 2016.

CONCLUSIONS

The ongoing, widespread lack of acknowledgement of the MAUP in disease mapping suggests that unawareness of its impact is extensive or that impact is underestimated. Routine implementation of OAM can help avoid resource allocation inefficiencies associated with this phenomenon. Our findings have immediate worldwide implications wherever single-aggregation disease maps are used to guide health policy planning and service delivery.

摘要

背景

在疾病制图中,出于各种原因(例如保护隐私),通常会对精细分辨率的空间健康数据进行聚合。通常,这种聚合仅发生一次,从而产生“单次聚合疾病图”,其对基础数据的表示取决于所选的聚合单元集。这种依赖性由可修改的区域单元问题(MAUP)描述。尽管有大量文献,但在实践中,MAUP 很少得到承认,包括在疾病制图中。此外,尽管单次聚合疾病图被广泛用于指导医疗资源的分配,但由于 MAUP 对这些地图的影响而导致的潜在效率低下问题尚未得到研究。

结果

我们引入了疾病制图的叠加聚合方法(OAM)。该方法通过合并来自多个不同集合的信息,避免了对任何单个聚合级别映射单元集的依赖。我们将 OAM 描述为一种新颖的平滑技术,并展示了其使用如何导致在资源分配效率方面相对于单次聚合地图的潜在显著提高。我们在模拟背景下证明了这些发现,并通过将 OAM 应用于现实世界的数据集:2016 年澳大利亚西澳大利亚州珀斯的缺血性中风住院治疗。

结论

在疾病制图中,MAUP 持续且广泛地未得到承认,这表明对其影响的认识不足或被低估。OAM 的常规实施可以帮助避免与该现象相关的资源分配效率低下问题。只要使用单次聚合疾病图来指导卫生政策规划和服务提供,我们的发现就会立即在全球范围内产生影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eafa/7532618/a820ed009be7/12942_2020_236_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验