Institute for Health Informatics, University of Minnesota, Suite 8-100, 516 Delaware Street SE, Minneapolis, MN 55455, United States.
Minnesota Department of Health, Sage Program, 85 7th Place E, Saint Paul, MN 55101, United States.
Spat Spatiotemporal Epidemiol. 2022 Feb;40:100476. doi: 10.1016/j.sste.2021.100476. Epub 2021 Dec 21.
Choropleth mapping continues to be a dominant mapping technique despite suffering from the Modifiable Areal Unit Problem (MAUP), which may distort disease risk patterns when different administrative units are used. Spatially adaptive filters (SAF) are one mapping technique that can address the MAUP, but the limitations and accuracy of spatially adaptive filters are not well tested. Our work examines these limitations by using varying levels of data aggregation using a case study of geocoded breast cancer screening data and a synthetic georeferenced population dataset that allows us to calculate SAFs at the individual-level. Data were grouped into four administrative boundaries (i.e., county, Zip Code Tabulated Areas, census tracts, and census blocks) and compared to individual-level data (control). Correlation assessed the similarity of SAFs, and map algebra calculated error maps compared to control. This work describes how pre-aggregation affects the level of spatial detail, map patterns, and over and under-prediction.
尽管存在可修改区域单元问题 (MAUP),面状制图法仍然是一种主要的制图技术,这可能会扭曲不同行政单元使用时的疾病风险模式。空间自适应滤波器 (SAF) 是一种可以解决 MAUP 的制图技术,但空间自适应滤波器的局限性和准确性尚未得到充分验证。我们的工作通过使用不同程度的数据聚合来检查这些局限性,使用地理编码乳腺癌筛查数据和允许我们在个体水平计算 SAF 的合成地理参考人口数据集进行案例研究。数据被分为四个行政边界(即县、邮编区、普查区和普查块),并与个体水平数据(对照)进行比较。相关性评估了 SAF 的相似性,地图代数则计算了与对照相比的误差图。这项工作描述了预聚合如何影响空间细节水平、地图模式以及过度和不足预测。