Suppr超能文献

2016 - 2019年医疗保险和医疗补助索赔中描述的传染病病例的可修改区域单元问题

Modifiable Areal Unit Problems for Infectious Disease Cases Described in Medicare and Medicaid Claims, 2016-2019.

作者信息

Williams Nick

机构信息

National Library of Medicine, Lister Hill National Centre for Biomedical Communications, Maryland, United States of America.

出版信息

J Bacteriol Parasitol. 2024;15(Suppl 27). Epub 2024 May 13.

Abstract

INTRODUCTION

Modifiable Areal Unit Problems are a major source of spatial uncertainty, but their impact on infectious diseases and epidemic detection is unknown.

METHODS

CMS claims (2016-2019) which included infectious disease codes learned through Systematized Nomenclature of Medicine Clinical Terms (SNOMED CT) were extracted and analysed at two different units of geography; states and 'home to work commute extent' mega regions. Analysis was per member per month. Rolling average above the series median within geography and agent of infection was used to assess peak detection. Spatial random forest was used to assess region segmentation by agent of infection.

RESULTS

Mega-regions produced better peak discovery for most, but not all agents of infection. Variable importance and Gini measures from spatial random forest show agent-location discrimination between states and regions.

CONCLUSION

Researchers should defend their geographic unit of report used in peer review studies on an agent by-agent basis.

摘要

引言

可修改区域单元问题是空间不确定性的主要来源,但其对传染病和疫情检测的影响尚不清楚。

方法

提取并分析了2016 - 2019年医疗保险与医疗补助服务中心(CMS)的索赔数据,这些数据包含通过医学临床术语系统命名法(SNOMED CT)得知的传染病代码,分析在两个不同的地理单元进行;州以及“上班通勤范围”大区域。分析按每月每个参保人进行。使用地理区域和感染源内高于序列中位数的滚动平均值来评估峰值检测。空间随机森林用于评估按感染源进行的区域分割。

结果

对于大多数但并非所有感染源,大区域能产生更好的峰值发现。空间随机森林的变量重要性和基尼系数显示了州和区域之间感染源位置的差异。

结论

研究人员应在同行评审研究中逐个感染源地为所使用的地理报告单元进行辩护。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/41ea/11671149/094b9d6e175f/nihms-2001875-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验