Suppr超能文献

已完成的 PIN-PMN-PT 阵列的有效耦合系数。

The effective coupling coefficient for a completed PIN-PMN-PT array.

机构信息

UC Davis, United States.

USC, United States.

出版信息

Ultrasonics. 2021 Jan;109:106258. doi: 10.1016/j.ultras.2020.106258. Epub 2020 Sep 23.

Abstract

The computation of the electromechanical coupling coefficient (EMCC) of a fully assembled medical ultrasound transducer array is directly computed with closed form expressions. The Levenberg-Marquardt non-linear regression algorithm (LMA) is employed to help confirm the EMCC calculated prediction (k) and provide statistical insights. The complex electrical impedance spectra of a 1-3 composite array with two matching layers operating at a 3.75 MHz center frequency using PIN-PMN-PT single crystal material is measured in air both before and after oven heating at 160 °C for 15 min. The oven heating produces changes in the EMCC of -4.9%, clamped dielectric constant of -11%, and effective transducer longitudinal velocity of -2.5%. Utilizing the pre- and post-heating array impedance data, the calculated EMCC values from the new closed form expressions agree well with the complete KLM model based LMA, and also exhibit approximately one tenth the error as compared to the formulas for a flat, unloaded transducer.

摘要

使用 Levenberg-Marquardt 非线性回归算法(LMA)来帮助确认计算出的机电耦合系数(EMCC)预测值(k)并提供统计见解。在空气中测量了具有两个匹配层的 1-3 复合材料阵列的复阻抗谱,该阵列使用 PIN-PMN-PT 单晶材料在 3.75MHz 中心频率下工作,在 160°C 下烘烤 15 分钟前后。烘烤会导致 EMCC 降低-4.9%,夹紧介电常数降低-11%,有效换能器纵向速度降低-2.5%。利用加热前后的阵列阻抗数据,新的封闭形式表达式计算出的 EMCC 值与基于 KLM 模型的完整 LMA 非常吻合,并且与平面、无负载换能器的公式相比,误差也大约只有十分之一。

相似文献

1
The effective coupling coefficient for a completed PIN-PMN-PT array.
Ultrasonics. 2021 Jan;109:106258. doi: 10.1016/j.ultras.2020.106258. Epub 2020 Sep 23.
2
PIN-PMN-PT Single Crystal 1-3 Composite-based 20 MHz Ultrasound Phased Array.
Micromachines (Basel). 2020 May 21;11(5):524. doi: 10.3390/mi11050524.
3
Micromachined PIN-PMN-PT crystal composite transducer for high-frequency intravascular ultrasound (IVUS) imaging.
IEEE Trans Ultrason Ferroelectr Freq Control. 2014 Jul;61(7):1171-8. doi: 10.1109/TUFFC.2014.3016.
4
Effects of Composition Segregation in PMN-PT Crystals on Ultrasound Transducer Performance.
IEEE Trans Ultrason Ferroelectr Freq Control. 2022 Feb;69(2):795-802. doi: 10.1109/TUFFC.2021.3131204. Epub 2022 Jan 27.
5
Broadband ultrasonic linear array using ternary PIN-PMN-PT single crystal.
Rev Sci Instrum. 2012 Sep;83(9):095001. doi: 10.1063/1.4748522.
6
Can Mn:PIN-PMN-PT piezocrystal replace hard piezoceramic in power ultrasonic devices?
Ultrasonics. 2024 Mar;138:107257. doi: 10.1016/j.ultras.2024.107257. Epub 2024 Feb 2.
7
Fabrication and performance of endoscopic ultrasound radial arrays based on PMN-PT single crystal/epoxy 1-3 composite.
IEEE Trans Ultrason Ferroelectr Freq Control. 2011 Feb;58(2):477-84. doi: 10.1109/TUFFC.2011.1825.
8
High Frequency PMN-PT 1-3 Composite Transducer for Ultrasonic Imaging Application.
Ferroelectrics. 2010;408(1):120-128. doi: 10.1080/00150193.2010.48554.
9
Development of a 20-MHz wide-bandwidth PMN-PT single crystal phased-array ultrasound transducer.
Ultrasonics. 2017 Jan;73:181-186. doi: 10.1016/j.ultras.2016.09.012. Epub 2016 Sep 12.
10
Investigation of High-Power Properties of PIN-PMN-PT Relaxor-Based Ferroelectric Single Crystals and PZT-4 Piezoelectric Ceramics.
IEEE Trans Ultrason Ferroelectr Freq Control. 2020 Aug;67(8):1641-1646. doi: 10.1109/TUFFC.2020.2979217. Epub 2020 Mar 9.

引用本文的文献

1
Outperforming piezoelectric ultrasonics with high-reliability single-membrane CMUT array elements.
Microsyst Nanoeng. 2022 Jun 2;8:59. doi: 10.1038/s41378-022-00392-0. eCollection 2022.

本文引用的文献

1
Co-Integrated PIN-PMN-PT 2-D Array and Transceiver Electronics by Direct Assembly Using a 3-D Printed Interposer Grid Frame.
IEEE Trans Ultrason Ferroelectr Freq Control. 2020 Feb;67(2):387-401. doi: 10.1109/TUFFC.2019.2944668. Epub 2019 Sep 30.
2
Functional Piezocrystal Characterisation under Varying Conditions.
Materials (Basel). 2015 Dec 2;8(12):8304-8326. doi: 10.3390/ma8125456.
3
Complete characterization of piezoceramic materials by means of two block-shaped test samples.
IEEE Trans Ultrason Ferroelectr Freq Control. 2015 Jul;62(7):1403-13. doi: 10.1109/TUFFC.2015.006997.
5
Thermal-independent properties of PIN-PMN-PT single-crystal linear-array ultrasonic transducers.
IEEE Trans Ultrason Ferroelectr Freq Control. 2012 Dec;59(12):2777-84. doi: 10.1109/TUFFC.2012.2519.
6
A novel method for characterization of piezoelectric material parameters by simulated annealing optimization.
IEEE Trans Ultrason Ferroelectr Freq Control. 2010 Dec;57(12):2613-5. doi: 10.1109/TUFFC.2010.1735.
7
FEM-Based determination of real and complex elastic, dielectric, and piezoelectric moduli in piezoceramic materials.
IEEE Trans Ultrason Ferroelectr Freq Control. 2008 Feb;55(2):465-75. doi: 10.1109/TUFFC.2008.664.
8
Finite-element analysis of vibrational modes in piezoelectric ceramic disks.
IEEE Trans Ultrason Ferroelectr Freq Control. 1990;37(4):316-28. doi: 10.1109/58.56492.
9
Simulation of piezoelectric devices by two- and three-dimensional finite elements.
IEEE Trans Ultrason Ferroelectr Freq Control. 1990;37(3):233-47. doi: 10.1109/58.55314.
10
Modeling 1-3 composite piezoelectrics: thickness-mode oscillations.
IEEE Trans Ultrason Ferroelectr Freq Control. 1991;38(1):40-7. doi: 10.1109/58.67833.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验