Yoshida Ruriko, Takamori Misaki, Matsumoto Hideyuki, Miura Keiji
Department of Operations Research, Naval Postgraduate School, Monterey, 93943, CA, USA.
Graduate School of Science and Technology, Kwansei Gakuin University, Sanda, 669-1337, Hyogo, Japan.
Neural Netw. 2023 Jan;157:77-89. doi: 10.1016/j.neunet.2022.10.002. Epub 2022 Oct 13.
Support Vector Machines (SVMs) are one of the most popular supervised learning models to classify using a hyperplane in an Euclidean space. Similar to SVMs, tropical SVMs classify data points using a tropical hyperplane under the tropical metric with the max-plus algebra. In this paper, first we show generalization error bounds of tropical SVMs over the tropical projective torus. While the generalization error bounds attained via Vapnik-Chervonenkis (VC) dimensions in a distribution-free manner still depend on the dimension, we also show numerically and theoretically by extreme value statistics that the tropical SVMs for classifying data points from two Gaussian distributions as well as empirical data sets of different neuron types are fairly robust against the curse of dimensionality. Extreme value statistics also underlie the anomalous scaling behaviors of the tropical distance between random vectors with additional noise dimensions. Finally, we define tropical SVMs over a function space with the tropical metric.
支持向量机(SVM)是最受欢迎的监督学习模型之一,用于在欧几里得空间中使用超平面进行分类。与支持向量机类似,热带支持向量机在具有最大加代数的热带度量下,使用热带超平面来对数据点进行分类。在本文中,首先我们展示了热带支持向量机在热带射影环面上的泛化误差界。虽然通过Vapnik-Chervonenkis(VC)维数以无分布方式获得的泛化误差界仍然依赖于维度,但我们还通过极值统计在数值和理论上表明,用于对来自两个高斯分布的数据点以及不同神经元类型的经验数据集进行分类的热带支持向量机对维度诅咒具有相当的鲁棒性。极值统计也是具有附加噪声维度的随机向量之间热带距离的异常缩放行为的基础。最后,我们在具有热带度量的函数空间上定义热带支持向量机。