Suppr超能文献

流固耦合的浸入式方法

Immersed Methods for Fluid-Structure Interaction.

作者信息

Griffith Boyce E, Patankar Neelesh A

机构信息

Departments of Mathematics, Applied Physical Sciences, and Biomedical Engineering, University of North Carolina, Chapel Hill, North Carolina 27599, USA.

Department of Mechanical Engineering, Northwestern University, Evanston, Illinois 60208, USA.

出版信息

Annu Rev Fluid Mech. 2020;52:421-448. doi: 10.1146/annurev-fluid-010719-060228. Epub 2019 Sep 5.

Abstract

Fluid-structure interaction is ubiquitous in nature and occurs at all biological scales. Immersed methods provide mathematical and computational frameworks for modeling fluid-structure systems. These methods, which typically use an Eulerian description of the fluid and a Lagrangian description of the structure, can treat thin immersed boundaries and volumetric bodies, and they can model structures that are flexible or rigid or that move with prescribed deformational kinematics. Immersed formulations do not require body-fitted discretizations and thereby avoid the frequent grid regeneration that can otherwise be required for models involving large deformations and displacements. This article reviews immersed methods for both elastic structures and structures with prescribed kinematics. It considers formulations using integral operators to connect the Eulerian and Lagrangian frames and methods that directly apply jump conditions along fluid-structure interfaces. Benchmark problems demonstrate the effectiveness of these methods, and selected applications at Reynolds numbers up to approximately 20,000 highlight their impact in biological and biomedical modeling and simulation.

摘要

流固相互作用在自然界中无处不在,且发生在所有生物尺度上。浸入式方法为流固系统建模提供了数学和计算框架。这些方法通常采用流体的欧拉描述和结构的拉格朗日描述,可以处理薄浸入边界和体积体,并且能够对柔性或刚性结构或具有规定变形运动学的移动结构进行建模。浸入式公式不需要贴体离散化,从而避免了涉及大变形和位移的模型可能需要的频繁网格再生。本文回顾了弹性结构和具有规定运动学的结构的浸入式方法。它考虑了使用积分算子连接欧拉框架和拉格朗日框架的公式,以及直接沿流固界面应用跳跃条件的方法。基准问题证明了这些方法的有效性,在雷诺数高达约20000的选定应用突出了它们在生物和生物医学建模与模拟中的影响。

相似文献

1
Immersed Methods for Fluid-Structure Interaction.
Annu Rev Fluid Mech. 2020;52:421-448. doi: 10.1146/annurev-fluid-010719-060228. Epub 2019 Sep 5.
2
Hybrid finite difference/finite element immersed boundary method.
Int J Numer Method Biomed Eng. 2017 Dec;33(12). doi: 10.1002/cnm.2888. Epub 2017 Aug 16.
3
On the Lagrangian-Eulerian Coupling in the Immersed Finite Element/Difference Method.
J Comput Phys. 2022 May 15;457. doi: 10.1016/j.jcp.2022.111042. Epub 2022 Feb 9.
4
A sharp interface Lagrangian-Eulerian method for flexible-body fluid-structure interaction.
J Comput Phys. 2023 Sep 1;488. doi: 10.1016/j.jcp.2023.112174. Epub 2023 Apr 24.
5
A sharp interface Lagrangian-Eulerian method for rigid-body fluid-structure interaction.
J Comput Phys. 2021 Oct 15;443. doi: 10.1016/j.jcp.2021.110442. Epub 2021 May 18.
6
Stabilization approaches for the hyperelastic immersed boundary method for problems of large-deformation incompressible elasticity.
Comput Methods Appl Mech Eng. 2020 Jun 15;365. doi: 10.1016/j.cma.2020.112978. Epub 2020 Apr 18.
7
An Immersed Interface Method for Discrete Surfaces.
J Comput Phys. 2020 Jan 1;400. doi: 10.1016/j.jcp.2019.07.052. Epub 2019 Jul 29.
8
Immersed boundary model of aortic heart valve dynamics with physiological driving and loading conditions.
Int J Numer Method Biomed Eng. 2012 Mar;28(3):317-45. doi: 10.1002/cnm.1445.
10
An Immersed Boundary method with divergence-free velocity interpolation and force spreading.
J Comput Phys. 2017 Oct 15;347:183-206. doi: 10.1016/j.jcp.2017.06.041. Epub 2017 Jun 28.

引用本文的文献

1
An immersed peridynamics model of fluid-structure interaction accounting for material damage and failure.
J Comput Phys. 2023 Nov 15;493. doi: 10.1016/j.jcp.2023.112466. Epub 2023 Sep 1.
3
Mapping spatial patterns to energetic benefits in groups of flow-coupled swimmers.
Elife. 2024 Dec 19;13:RP96129. doi: 10.7554/eLife.96129.
4
Dynamics of pH Oscillators in Continuous Stirred Tanks in Series.
Chemphyschem. 2024 Dec 2;25(23):e202400610. doi: 10.1002/cphc.202400610. Epub 2024 Oct 28.
5
Benchmarking the Immersed Boundary Method for Viscoelastic Flows.
J Comput Phys. 2024 Jun 1;506. doi: 10.1016/j.jcp.2024.112888. Epub 2024 Feb 28.
6
Origin and evolution of immersed boundary methods in computational fluid dynamics.
Phys Rev Fluids. 2023 Oct;8(10). doi: 10.1103/physrevfluids.8.100501. Epub 2023 Oct 6.
7
Modeling Dynamics of the Cardiovascular System Using Fluid-Structure Interaction Methods.
Biology (Basel). 2023 Jul 21;12(7):1026. doi: 10.3390/biology12071026.
9
A sharp interface Lagrangian-Eulerian method for flexible-body fluid-structure interaction.
J Comput Phys. 2023 Sep 1;488. doi: 10.1016/j.jcp.2023.112174. Epub 2023 Apr 24.
10
Diffuse-Interface Blended Method for Imposing Physical Boundaries in Two-Fluid Flows.
ACS Omega. 2023 Apr 19;8(17):15518-15534. doi: 10.1021/acsomega.3c00838. eCollection 2023 May 2.

本文引用的文献

1
Stabilization approaches for the hyperelastic immersed boundary method for problems of large-deformation incompressible elasticity.
Comput Methods Appl Mech Eng. 2020 Jun 15;365. doi: 10.1016/j.cma.2020.112978. Epub 2020 Apr 18.
2
Fluid-Structure Interaction Models of Bioprosthetic Heart Valve Dynamics in an Experimental Pulse Duplicator.
Ann Biomed Eng. 2020 May;48(5):1475-1490. doi: 10.1007/s10439-020-02466-4. Epub 2020 Feb 7.
3
An Immersed Interface Method for Discrete Surfaces.
J Comput Phys. 2020 Jan 1;400. doi: 10.1016/j.jcp.2019.07.052. Epub 2019 Jul 29.
4
Brownian dynamics of fully confined suspensions of rigid particles without Green's functions.
J Chem Phys. 2019 Apr 28;150(16):164116. doi: 10.1063/1.5090114.
5
Steady Flow in a Patient-Averaged Inferior Vena Cava-Part II: Computational Fluid Dynamics Verification and Validation.
Cardiovasc Eng Technol. 2018 Dec;9(4):654-673. doi: 10.1007/s13239-018-00392-0. Epub 2018 Nov 16.
6
Validation and Extension of a Fluid-Structure Interaction Model of the Healthy Aortic Valve.
Cardiovasc Eng Technol. 2018 Dec;9(4):739-751. doi: 10.1007/s13239-018-00391-1. Epub 2018 Nov 7.
7
Efficient collective swimming by harnessing vortices through deep reinforcement learning.
Proc Natl Acad Sci U S A. 2018 Jun 5;115(23):5849-5854. doi: 10.1073/pnas.1800923115. Epub 2018 May 21.
8
An anisotropic constitutive model for immersogeometric fluid-structure interaction analysis of bioprosthetic heart valves.
J Biomech. 2018 Jun 6;74:23-31. doi: 10.1016/j.jbiomech.2018.04.012. Epub 2018 Apr 12.
9
Studies of abnormalities of the lower esophageal sphincter during esophageal emptying based on a fully coupled bolus-esophageal-gastric model.
Biomech Model Mechanobiol. 2018 Aug;17(4):1069-1082. doi: 10.1007/s10237-018-1014-y. Epub 2018 Apr 11.
10
Fully-coupled aeroelastic simulation with fluid compressibility - For application to vocal fold vibration.
Comput Methods Appl Mech Eng. 2017 Mar 1;315:584-606. doi: 10.1016/j.cma.2016.11.010. Epub 2016 Oct 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验