Suppr超能文献

一种灵活的贝叶斯方法,用于处理纵向研究中具有不可忽略缺失值的单调缺失数据,并应用于急性精神分裂症临床试验。

A Flexible Bayesian Approach to Monotone Missing Data in Longitudinal Studies with Nonignorable Missingness with Application to an Acute Schizophrenia Clinical Trial.

作者信息

Linero Antonio R, Daniels Michael J

机构信息

Department of Statistics, University of Florida, Gainesville, FL, 32611.

Section of Integrative Biology, Department of Statistics & Data Sciences, University of Texas at Austin, Austin, TX 78712.

出版信息

J Am Stat Assoc. 2015 Mar;110(509):45-55. doi: 10.1080/01621459.2014.969424.

Abstract

We develop a Bayesian nonparametric model for a longitudinal response in the presence of nonignorable missing data. Our general approach is to first specify a working model that flexibly models the missingness and full outcome processes jointly. We specify a Dirichlet process mixture of missing at random (MAR) models as a prior on the joint distribution of the working model. This aspect of the model governs the fit of the observed data by modeling the observed data distribution as the marginalization over the missing data in the working model. We then separately specify the conditional distribution of the missing data given the observed data and dropout. This approach allows us to identify the distribution of the missing data using identifying restrictions as a starting point. We propose a framework for introducing sensitivity parameters, allowing us to vary the untestable assumptions about the missing data mechanism smoothly. Informative priors on the space of missing data assumptions can be specified to combine inferences under many different assumptions into a final inference and accurately characterize uncertainty. These methods are motivated by, and applied to, data from a clinical trial assessing the efficacy of a new treatment for acute Schizophrenia.

摘要

我们针对存在不可忽略缺失数据的纵向反应开发了一种贝叶斯非参数模型。我们的一般方法是首先指定一个工作模型,该模型能灵活地联合建模缺失性和完整结局过程。我们指定一个随机缺失(MAR)模型的狄利克雷过程混合作为工作模型联合分布的先验。模型的这一方面通过将观察到的数据分布建模为工作模型中缺失数据的边缘化来控制观察到的数据的拟合。然后我们分别指定给定观察到的数据和失访情况下缺失数据的条件分布。这种方法使我们能够以识别性限制为起点来识别缺失数据的分布。我们提出了一个引入敏感性参数的框架,使我们能够平滑地改变关于缺失数据机制的不可检验假设。可以在缺失数据假设空间上指定信息性先验,以便将许多不同假设下的推断结合到最终推断中,并准确地刻画不确定性。这些方法的灵感来自一项评估新型急性精神分裂症治疗疗效的临床试验数据,并应用于该数据。

相似文献

2
A Semiparametric Bayesian Approach to Dropout in Longitudinal Studies with Auxiliary Covariates.
J Comput Graph Stat. 2020;29(1):1-12. doi: 10.1080/10618600.2019.1617159. Epub 2019 Jul 2.
3
Bayesian pattern-mixture models for dropout and intermittently missing data in longitudinal data analysis.
Behav Res Methods. 2024 Mar;56(3):1953-1967. doi: 10.3758/s13428-023-02128-y. Epub 2023 May 23.
4
Bayesian methods for nonignorable dropout in joint models in smoking cessation studies.
J Am Stat Assoc. 2016;111(516):1454-1465. doi: 10.1080/01621459.2016.1167693. Epub 2017 Jan 5.
5
A Two-Step Approach for Analysis of Nonignorable Missing Outcomes in Longitudinal Regression: an Application to Upstate KIDS Study.
Paediatr Perinat Epidemiol. 2017 Sep;31(5):468-478. doi: 10.1111/ppe.12382. Epub 2017 Aug 2.
7
Nonstandard conditionally specified models for nonignorable missing data.
Proc Natl Acad Sci U S A. 2020 Aug 11;117(32):19045-19053. doi: 10.1073/pnas.1815563117. Epub 2020 Jul 28.
9
A framework for Bayesian nonparametric inference for causal effects of mediation.
Biometrics. 2017 Jun;73(2):401-409. doi: 10.1111/biom.12575. Epub 2016 Aug 1.

引用本文的文献

2
Dirichlet process mixture models for the analysis of repeated attempt designs.
Biometrics. 2023 Dec;79(4):3907-3915. doi: 10.1111/biom.13894. Epub 2023 Jun 22.
3
A Bayesian parametric approach to handle missing longitudinal outcome data in trial-based health economic evaluations.
J R Stat Soc Ser A Stat Soc. 2020 Feb;183(2):607-629. doi: 10.1111/rssa.12522. Epub 2019 Sep 26.
5
A Bayesian transition model for missing longitudinal binary outcomes and an application to a smoking cessation study.
Stat Modelling. 2020 Jun;20(3):310-338. doi: 10.1177/1471082x18821489. Epub 2019 Mar 4.
6
A Semiparametric Bayesian Approach to Dropout in Longitudinal Studies with Auxiliary Covariates.
J Comput Graph Stat. 2020;29(1):1-12. doi: 10.1080/10618600.2019.1617159. Epub 2019 Jul 2.
7
Effect of Telehealth Extended Care for Maintenance of Weight Loss in Rural US Communities: A Randomized Clinical Trial.
JAMA Netw Open. 2020 Jun 1;3(6):e206764. doi: 10.1001/jamanetworkopen.2020.6764.
8
Bayesian Approaches for Missing Not at Random Outcome Data: The Role of Identifying Restrictions.
Stat Sci. 2018 May;33(2):198-213. doi: 10.1214/17-STS630. Epub 2018 May 3.

本文引用的文献

3
Improved doubly robust estimation when data are monotonely coarsened, with application to longitudinal studies with dropout.
Biometrics. 2011 Jun;67(2):536-45. doi: 10.1111/j.1541-0420.2010.01476.x. Epub 2010 Aug 19.
4
5
Strategies to fit pattern-mixture models.
Biostatistics. 2002 Jun;3(2):245-65. doi: 10.1093/biostatistics/3.2.245.
6
Joint modelling of longitudinal measurements and event time data.
Biostatistics. 2000 Dec;1(4):465-80. doi: 10.1093/biostatistics/1.4.465.
7
Bayesian meta-analysis for longitudinal data models using multivariate mixture priors.
Biometrics. 2003 Mar;59(1):66-75. doi: 10.1111/1541-0420.00008.
8
Mixture models for the joint distribution of repeated measures and event times.
Stat Med. 1997;16(1-3):239-57. doi: 10.1002/(sici)1097-0258(19970215)16:3<239::aid-sim483>3.0.co;2-x.
9
The positive and negative syndrome scale (PANSS) for schizophrenia.
Schizophr Bull. 1987;13(2):261-76. doi: 10.1093/schbul/13.2.261.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验