Linero Antonio R, Daniels Michael J
Department of Statistics, University of Florida, Gainesville, FL, 32611.
Section of Integrative Biology, Department of Statistics & Data Sciences, University of Texas at Austin, Austin, TX 78712.
J Am Stat Assoc. 2015 Mar;110(509):45-55. doi: 10.1080/01621459.2014.969424.
We develop a Bayesian nonparametric model for a longitudinal response in the presence of nonignorable missing data. Our general approach is to first specify a working model that flexibly models the missingness and full outcome processes jointly. We specify a Dirichlet process mixture of missing at random (MAR) models as a prior on the joint distribution of the working model. This aspect of the model governs the fit of the observed data by modeling the observed data distribution as the marginalization over the missing data in the working model. We then separately specify the conditional distribution of the missing data given the observed data and dropout. This approach allows us to identify the distribution of the missing data using identifying restrictions as a starting point. We propose a framework for introducing sensitivity parameters, allowing us to vary the untestable assumptions about the missing data mechanism smoothly. Informative priors on the space of missing data assumptions can be specified to combine inferences under many different assumptions into a final inference and accurately characterize uncertainty. These methods are motivated by, and applied to, data from a clinical trial assessing the efficacy of a new treatment for acute Schizophrenia.
我们针对存在不可忽略缺失数据的纵向反应开发了一种贝叶斯非参数模型。我们的一般方法是首先指定一个工作模型,该模型能灵活地联合建模缺失性和完整结局过程。我们指定一个随机缺失(MAR)模型的狄利克雷过程混合作为工作模型联合分布的先验。模型的这一方面通过将观察到的数据分布建模为工作模型中缺失数据的边缘化来控制观察到的数据的拟合。然后我们分别指定给定观察到的数据和失访情况下缺失数据的条件分布。这种方法使我们能够以识别性限制为起点来识别缺失数据的分布。我们提出了一个引入敏感性参数的框架,使我们能够平滑地改变关于缺失数据机制的不可检验假设。可以在缺失数据假设空间上指定信息性先验,以便将许多不同假设下的推断结合到最终推断中,并准确地刻画不确定性。这些方法的灵感来自一项评估新型急性精神分裂症治疗疗效的临床试验数据,并应用于该数据。