Suppr超能文献

静息态功能连接模式可预测原发性痛经的针灸治疗反应

Resting-State Functional Connectivity Patterns Predict Acupuncture Treatment Response in Primary Dysmenorrhea.

作者信息

Yu Siyi, Xie Mingguo, Liu Shuqin, Guo Xiaoli, Tian Jin, Wei Wei, Zhang Qi, Zeng Fang, Liang Fanrong, Yang Jie

机构信息

Brain Research Center, Department of Acupuncture & Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China.

Department of Radiology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.

出版信息

Front Neurosci. 2020 Sep 8;14:559191. doi: 10.3389/fnins.2020.559191. eCollection 2020.

Abstract

Primary dysmenorrhea (PDM) is a common complaint in women throughout the menstrual years. Acupuncture has been shown to be effective in dysmenorrhea; however, there are large interindividual differences in patients' responses to acupuncture treatment. Fifty-four patients with PDM were recruited and randomized into real or sham acupuncture treatment groups (over the course of three menstrual cycles). Pain-related functional connectivity (FC) matrices were constructed at baseline and post-treatment period. The different neural mechanisms altered by real and sham acupuncture were detected with multivariate analysis of variance. Multivariate pattern analysis (MVPA) based on a machine learning approach was used to explore whether the different FC patterns predicted the acupuncture treatment response in the PDM patients. The results showed that real but not sham acupuncture significantly relieved pain severity in PDM patients. Real and sham acupuncture displayed differences in FC alterations between the descending pain modulatory system (DPMS) and sensorimotor network (SMN), the salience network (SN) and SMN, and the SN and default mode network (DMN). Furthermore, MVPA found that these FC patterns at baseline could predict the acupuncture treatment response in PDM patients. The present study verified differentially altered brain mechanisms underlying real and sham acupuncture in PDM patients and supported the use of neuroimaging biomarkers for individual-based precise acupuncture treatment in patients with PDM.

摘要

原发性痛经(PDM)是女性在整个经期常见的主诉。针灸已被证明对痛经有效;然而,患者对针灸治疗的反应存在很大的个体差异。招募了54名PDM患者,并将其随机分为真针灸治疗组或假针灸治疗组(在三个月经周期内)。在基线期和治疗后构建疼痛相关功能连接(FC)矩阵。通过多变量方差分析检测真针灸和假针灸改变的不同神经机制。基于机器学习方法的多变量模式分析(MVPA)用于探索不同的FC模式是否能预测PDM患者的针灸治疗反应。结果表明,真针灸而非假针灸能显著减轻PDM患者的疼痛严重程度。真针灸和假针灸在下行疼痛调节系统(DPMS)与感觉运动网络(SMN)、突显网络(SN)与SMN以及SN与默认模式网络(DMN)之间的FC改变存在差异。此外,MVPA发现基线时的这些FC模式可预测PDM患者的针灸治疗反应。本研究验证了PDM患者中真针灸和假针灸潜在的不同脑机制改变,并支持将神经影像生物标志物用于PDM患者基于个体的精准针灸治疗。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/009b/7506136/cb35e7e93dbb/fnins-14-559191-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验