The Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.
Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada.
Ann Neurol. 2019 Nov;86(5):743-753. doi: 10.1002/ana.25574. Epub 2019 Aug 27.
OBJECTIVE: Vagus nerve stimulation (VNS) is a common treatment for medically intractable epilepsy, but response rates are highly variable, with no preoperative means of identifying good candidates. This study aimed to predict VNS response using structural and functional connectomic profiling. METHODS: Fifty-six children, comprising discovery (n = 38) and validation (n = 18) cohorts, were recruited from 3 separate institutions. Diffusion tensor imaging was used to identify group differences in white matter microstructure, which in turn informed beamforming of resting-state magnetoencephalography recordings. The results were used to generate a support vector machine learning classifier, which was independently validated. This algorithm was compared to a second classifier generated using 31 clinical covariates. RESULTS: Treatment responders demonstrated greater fractional anisotropy in left thalamocortical, limbic, and association fibers, as well as greater connectivity in a functional network encompassing left thalamic, insular, and temporal nodes (p < 0.05). The resulting classifier demonstrated 89.5% accuracy and area under the receiver operating characteristic (ROC) curve of 0.93 on 10-fold cross-validation. In the external validation cohort, this model demonstrated an accuracy of 83.3%, with a sensitivity of 85.7% and specificity of 75.0%. This was significantly superior to predictions using clinical covariates alone, which exhibited an area under the ROC curve of 0.57 (p < 0.008). INTERPRETATION: This study provides the first multi-institutional, multimodal connectomic prediction algorithm for VNS, and provides new insights into its mechanism of action. Reliable identification of VNS responders is critical to mitigate surgical risks for children who may not benefit, and to ensure cost-effective allocation of health care resources. ANN NEUROL 2019;86:743-753.
目的:迷走神经刺激(VNS)是治疗药物难治性癫痫的常用方法,但反应率差异很大,术前无法识别合适的患者。本研究旨在通过结构和功能连接组学分析来预测 VNS 的反应。
方法:从 3 个不同的机构招募了 56 名儿童,包括发现(n = 38)和验证(n = 18)队列。使用弥散张量成像来识别白质微观结构的组间差异,进而为静息态脑磁图记录进行波束成形。结果用于生成支持向量机学习分类器,并对其进行独立验证。该算法与使用 31 个临床协变量生成的第二个分类器进行了比较。
结果:治疗反应者表现出左侧丘脑皮质、边缘和联合纤维的各向异性分数增加,以及包括左侧丘脑、岛叶和颞叶节点的功能网络中连接性增加(p < 0.05)。所得分类器在 10 倍交叉验证中表现出 89.5%的准确率和 0.93 的受试者工作特征(ROC)曲线下面积。在外部验证队列中,该模型的准确率为 83.3%,敏感性为 85.7%,特异性为 75.0%。这明显优于仅使用临床协变量的预测,后者的 ROC 曲线下面积为 0.57(p < 0.008)。
结论:这项多机构、多模态连接组学研究为 VNS 提供了首个预测算法,并为其作用机制提供了新的见解。可靠地识别 VNS 反应者对于减轻可能无益的儿童的手术风险以及确保医疗保健资源的成本效益分配至关重要。
Ann Neurol. 2019-8-27
Neuroimage Clin. 2020
Neuroimage Clin. 2018-6-18
Acta Neurochir (Wien). 2025-8-26
Front Neural Circuits. 2025-4-14
Ann Clin Transl Neurol. 2025-3
Adv Exp Med Biol. 2024
Nat Rev Neurol. 2024-6