文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

连接组学分析鉴定出迷走神经刺激的应答者。

Connectomic Profiling Identifies Responders to Vagus Nerve Stimulation.

机构信息

The Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.

Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada.

出版信息

Ann Neurol. 2019 Nov;86(5):743-753. doi: 10.1002/ana.25574. Epub 2019 Aug 27.


DOI:10.1002/ana.25574
PMID:31393626
Abstract

OBJECTIVE: Vagus nerve stimulation (VNS) is a common treatment for medically intractable epilepsy, but response rates are highly variable, with no preoperative means of identifying good candidates. This study aimed to predict VNS response using structural and functional connectomic profiling. METHODS: Fifty-six children, comprising discovery (n = 38) and validation (n = 18) cohorts, were recruited from 3 separate institutions. Diffusion tensor imaging was used to identify group differences in white matter microstructure, which in turn informed beamforming of resting-state magnetoencephalography recordings. The results were used to generate a support vector machine learning classifier, which was independently validated. This algorithm was compared to a second classifier generated using 31 clinical covariates. RESULTS: Treatment responders demonstrated greater fractional anisotropy in left thalamocortical, limbic, and association fibers, as well as greater connectivity in a functional network encompassing left thalamic, insular, and temporal nodes (p < 0.05). The resulting classifier demonstrated 89.5% accuracy and area under the receiver operating characteristic (ROC) curve of 0.93 on 10-fold cross-validation. In the external validation cohort, this model demonstrated an accuracy of 83.3%, with a sensitivity of 85.7% and specificity of 75.0%. This was significantly superior to predictions using clinical covariates alone, which exhibited an area under the ROC curve of 0.57 (p < 0.008). INTERPRETATION: This study provides the first multi-institutional, multimodal connectomic prediction algorithm for VNS, and provides new insights into its mechanism of action. Reliable identification of VNS responders is critical to mitigate surgical risks for children who may not benefit, and to ensure cost-effective allocation of health care resources. ANN NEUROL 2019;86:743-753.

摘要

目的:迷走神经刺激(VNS)是治疗药物难治性癫痫的常用方法,但反应率差异很大,术前无法识别合适的患者。本研究旨在通过结构和功能连接组学分析来预测 VNS 的反应。

方法:从 3 个不同的机构招募了 56 名儿童,包括发现(n = 38)和验证(n = 18)队列。使用弥散张量成像来识别白质微观结构的组间差异,进而为静息态脑磁图记录进行波束成形。结果用于生成支持向量机学习分类器,并对其进行独立验证。该算法与使用 31 个临床协变量生成的第二个分类器进行了比较。

结果:治疗反应者表现出左侧丘脑皮质、边缘和联合纤维的各向异性分数增加,以及包括左侧丘脑、岛叶和颞叶节点的功能网络中连接性增加(p < 0.05)。所得分类器在 10 倍交叉验证中表现出 89.5%的准确率和 0.93 的受试者工作特征(ROC)曲线下面积。在外部验证队列中,该模型的准确率为 83.3%,敏感性为 85.7%,特异性为 75.0%。这明显优于仅使用临床协变量的预测,后者的 ROC 曲线下面积为 0.57(p < 0.008)。

结论:这项多机构、多模态连接组学研究为 VNS 提供了首个预测算法,并为其作用机制提供了新的见解。可靠地识别 VNS 反应者对于减轻可能无益的儿童的手术风险以及确保医疗保健资源的成本效益分配至关重要。

相似文献

[1]
Connectomic Profiling Identifies Responders to Vagus Nerve Stimulation.

Ann Neurol. 2019-8-27

[2]
Somatosensory evoked fields predict response to vagus nerve stimulation.

Neuroimage Clin. 2020

[3]
Presurgical thalamocortical connectivity is associated with response to vagus nerve stimulation in children with intractable epilepsy.

Neuroimage Clin. 2017-9-22

[4]
Predicting seizure outcome of vagus nerve stimulation using MEG-based network topology.

Neuroimage Clin. 2018-6-18

[5]
Identifying responders to vagus nerve stimulation based on microstructural features of thalamocortical tracts in drug-resistant epilepsy.

Neurotherapeutics. 2024-9

[6]
Brain functional connectivity-based prediction of vagus nerve stimulation efficacy in pediatric pharmacoresistant epilepsy.

CNS Neurosci Ther. 2023-11

[7]
A predictive model combining connectomics and entropy biomarkers to discriminate long-term vagus nerve stimulation efficacy for pediatric patients with drug-resistant epilepsy.

CNS Neurosci Ther. 2024-7

[8]
A prediction model integrating synchronization biomarkers and clinical features to identify responders to vagus nerve stimulation among pediatric patients with drug-resistant epilepsy.

CNS Neurosci Ther. 2022-11

[9]
An interictal EEG can predict the outcome of vagus nerve stimulation therapy for children with intractable epilepsy.

Childs Nerv Syst. 2017-1

[10]
The effect of vagal nerve stimulation on hippocampal-thalamic functional connectivity in epilepsy patients.

Brain Res Bull. 2020-10

引用本文的文献

[1]
Asymmetric efficacy of VNS within a single patient with bilateral focal frontal lobe epilepsy: A case report.

Acta Neurochir (Wien). 2025-8-26

[2]
Vagus nerve stimulation as a predictive coding modulator that enhances feedforward over feedback transmission.

Front Neural Circuits. 2025-4-14

[3]
Research progress on the electrophysiological indicators to predict the efficacy of vagus nerve stimulation for drug-refractory epilepsy.

Acta Epileptol. 2024-3-1

[4]
Right-sided vagus nerve stimulation: Worldwide collection and perspectives.

Ann Clin Transl Neurol. 2025-3

[5]
Graph Theory and Modeling of Network Topology in Clinical Neurosurgery.

Adv Exp Med Biol. 2024

[6]
Vagus nerve stimulation for epilepsy: A narrative review of factors predictive of response.

Epilepsia. 2024-12

[7]
A predictive model combining connectomics and entropy biomarkers to discriminate long-term vagus nerve stimulation efficacy for pediatric patients with drug-resistant epilepsy.

CNS Neurosci Ther. 2024-7

[8]
Identifying responders to vagus nerve stimulation based on microstructural features of thalamocortical tracts in drug-resistant epilepsy.

Neurotherapeutics. 2024-9

[9]
Electroencephalogram synchronization measure as a predictive biomarker of Vagus nerve stimulation response in refractory epilepsy: A retrospective study.

PLoS One. 2024

[10]
Artificial intelligence in epilepsy - applications and pathways to the clinic.

Nat Rev Neurol. 2024-6

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索