Suppr超能文献

用于解析肿瘤克隆表达程序的通路水平进展的神经网络反卷积方法及其在乳腺癌脑转移中的应用

Neural Network Deconvolution Method for Resolving Pathway-Level Progression of Tumor Clonal Expression Programs With Application to Breast Cancer Brain Metastases.

作者信息

Tao Yifeng, Lei Haoyun, Lee Adrian V, Ma Jian, Schwartz Russell

机构信息

Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, United States.

Joint Carnegie Mellon-University of Pittsburgh Ph.D. Program in Computational Biology, Pittsburgh, PA, United States.

出版信息

Front Physiol. 2020 Sep 4;11:1055. doi: 10.3389/fphys.2020.01055. eCollection 2020.

Abstract

Metastasis is the primary mechanism by which cancer results in mortality and there are currently no reliable treatment options once it occurs, making the metastatic process a critical target for new diagnostics and therapeutics. Treating metastasis before it appears is challenging, however, in part because metastases may be quite distinct genomically from the primary tumors from which they presumably emerged. Phylogenetic studies of cancer development have suggested that changes in tumor genomics over stages of progression often result from shifts in the abundance of clonal cellular populations, as late stages of progression may derive from or select for clonal populations rare in the primary tumor. The present study develops computational methods to infer clonal heterogeneity and dynamics across progression stages via deconvolution and clonal phylogeny reconstruction of pathway-level expression signatures in order to reconstruct how these processes might influence average changes in genomic signatures over progression. We show, via application to a study of gene expression in a collection of matched breast primary tumor and metastatic samples, that the method can infer coarse-grained substructure and stromal infiltration across the metastatic transition. The results suggest that genomic changes observed in metastasis, such as gain of the signaling pathway, are likely caused by early events in clonal evolution followed by expansion of minor clonal populations in metastasis, a finding that may have translational implications for early detection or prevention of metastasis.

摘要

转移是癌症导致死亡的主要机制,一旦发生转移,目前尚无可靠的治疗选择,这使得转移过程成为新诊断方法和治疗手段的关键靶点。然而,在转移出现之前进行治疗具有挑战性,部分原因是转移灶在基因组上可能与它们可能起源的原发肿瘤有很大差异。癌症发展的系统发育研究表明,肿瘤基因组在进展阶段的变化通常是由于克隆细胞群体丰度的改变,因为进展后期可能源自或选择原发肿瘤中罕见的克隆群体。本研究开发了计算方法,通过对通路水平表达特征进行反卷积和克隆系统发育重建,推断整个进展阶段的克隆异质性和动态变化,以重建这些过程如何影响进展过程中基因组特征的平均变化。通过将该方法应用于一组匹配的乳腺原发肿瘤和转移样本的基因表达研究,我们表明该方法可以推断转移过程中的粗粒度亚结构和基质浸润。结果表明,在转移中观察到的基因组变化,如信号通路的获得,可能是由克隆进化中的早期事件引起的,随后转移中次要克隆群体扩张,这一发现可能对转移的早期检测或预防具有转化意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6640/7499245/b3de54de7936/fphys-11-01055-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验