Suppr超能文献

肿瘤基因组样本中结构变异的去卷积和系统发生推断。

Deconvolution and phylogeny inference of structural variations in tumor genomic samples.

机构信息

Department of Computational Biology, Carnegie Mellon University, Pittsburgh, PA, USA.

Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA.

出版信息

Bioinformatics. 2018 Jul 1;34(13):i357-i365. doi: 10.1093/bioinformatics/bty270.

Abstract

MOTIVATION

Phylogenetic reconstruction of tumor evolution has emerged as a crucial tool for making sense of the complexity of emerging cancer genomic datasets. Despite the growing use of phylogenetics in cancer studies, though, the field has only slowly adapted to many ways that tumor evolution differs from classic species evolution. One crucial question in that regard is how to handle inference of structural variations (SVs), which are a major mechanism of evolution in cancers but have been largely neglected in tumor phylogenetics to date, in part due to the challenges of reliably detecting and typing SVs and interpreting them phylogenetically.

RESULTS

We present a novel method for reconstructing evolutionary trajectories of SVs from bulk whole-genome sequence data via joint deconvolution and phylogenetics, to infer clonal sub-populations and reconstruct their ancestry. We establish a novel likelihood model for joint deconvolution and phylogenetic inference on bulk SV data and formulate an associated optimization algorithm. We demonstrate the approach to be efficient and accurate for realistic scenarios of SV mutation on simulated data. Application to breast cancer genomic data from The Cancer Genome Atlas shows it to be practical and effective at reconstructing features of SV-driven evolution in single tumors.

AVAILABILITY AND IMPLEMENTATION

Python source code and associated documentation are available at https://github.com/jaebird123/tusv.

摘要

动机

肿瘤进化的系统发育重建已成为理解新兴癌症基因组数据集复杂性的重要工具。尽管系统发生学在癌症研究中的应用越来越广泛,但该领域仅缓慢适应了肿瘤进化与经典物种进化的许多不同之处。在这方面,一个关键问题是如何处理结构变异(SVs)的推断,SVs 是癌症进化的主要机制,但迄今为止在肿瘤系统发生学中基本上被忽视了,部分原因是可靠检测和分型 SVs 并从系统发生学角度进行解释的挑战。

结果

我们提出了一种从全基因组序列数据中通过联合反卷积和系统发生学推断 SV 进化轨迹的新方法,以推断克隆亚群并重建它们的祖先。我们为批量 SV 数据的联合反卷积和系统发生推断建立了一个新的似然模型,并提出了一个相关的优化算法。我们证明了该方法在模拟数据中 SV 突变的实际场景下是高效和准确的。对来自癌症基因组图谱的乳腺癌基因组数据的应用表明,该方法在重建单个肿瘤中 SV 驱动进化的特征方面是实用和有效的。

可用性和实现

Python 源代码和相关文档可在 https://github.com/jaebird123/tusv 上获得。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb42/6022719/e9636be46c3d/bty270f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验