Suppr超能文献

线粒体在药物性肾损伤中的作用

The Role of Mitochondria in Drug-Induced Kidney Injury.

作者信息

Gai Zhibo, Gui Ting, Kullak-Ublick Gerd A, Li Yunlun, Visentin Michele

机构信息

Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China.

Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, Zurich, Switzerland.

出版信息

Front Physiol. 2020 Sep 4;11:1079. doi: 10.3389/fphys.2020.01079. eCollection 2020.

Abstract

The kidneys utilize roughly 10% of the body's oxygen supply to produce the energy required for accomplishing their primary function: the regulation of body fluid composition through secreting, filtering, and reabsorbing metabolites and nutrients. To ensure an adequate ATP supply, the kidneys are particularly enriched in mitochondria, having the second highest mitochondrial content and thus oxygen consumption of our body. The bulk of the ATP generated in the kidneys is consumed to move solutes toward (reabsorption) or from (secretion) the peritubular capillaries through the concerted action of an array of ATP-binding cassette (ABC) pumps and transporters. ABC pumps function upon direct ATP hydrolysis. Transporters are driven by the ion electrochemical gradients and the membrane potential generated by the asymmetric transport of ions across the plasma membrane mediated by the ATPase pumps. Some of these transporters, namely the polyspecific organic anion transporters (OATs), the organic anion transporting polypeptides (OATPs), and the organic cation transporters (OCTs) are highly expressed on the proximal tubular cell membranes and happen to also transport drugs whose levels in the proximal tubular cells can rapidly rise, thereby damaging the mitochondria and resulting in cell death and kidney injury. Drug-induced kidney injury (DIKI) is a growing public health concern and a major cause of drug attrition in drug development and post-marketing approval. As part of the article collection "Mitochondria in Renal Health and Disease," here, we provide a critical overview of the main molecular mechanisms underlying the mitochondrial damage caused by drugs inducing nephrotoxicity.

摘要

肾脏消耗约10%的机体氧气供应,以产生完成其主要功能所需的能量:通过分泌、过滤和重吸收代谢物及营养物质来调节体液成分。为确保充足的ATP供应,肾脏富含线粒体,其线粒体含量在人体中第二高,因而耗氧量也位居第二。肾脏中产生的大部分ATP用于通过一系列ATP结合盒(ABC)转运蛋白和转运体的协同作用,将溶质向(重吸收)或从(分泌)肾小管周围毛细血管转运。ABC转运蛋白通过直接水解ATP发挥作用。转运体由离子电化学梯度和由ATP酶泵介导的离子跨质膜不对称转运产生的膜电位驱动。其中一些转运体,即多特异性有机阴离子转运体(OATs)、有机阴离子转运多肽(OATPs)和有机阳离子转运体(OCTs)在近端肾小管细胞膜上高度表达,且恰好也转运药物,这些药物在近端肾小管细胞中的水平会迅速升高,从而损害线粒体,导致细胞死亡和肾损伤。药物性肾损伤(DIKI)是一个日益严重的公共卫生问题,也是药物研发和上市后批准中药物淘汰的主要原因。作为“肾脏健康与疾病中的线粒体”文章集的一部分,在此,我们对导致肾毒性的药物引起线粒体损伤的主要分子机制进行了批判性综述。

相似文献

1
The Role of Mitochondria in Drug-Induced Kidney Injury.
Front Physiol. 2020 Sep 4;11:1079. doi: 10.3389/fphys.2020.01079. eCollection 2020.
2
The kidney and uremic toxin removal: glomerulus or tubule?
Semin Nephrol. 2014 Mar;34(2):191-208. doi: 10.1016/j.semnephrol.2014.02.010. Epub 2014 Feb 18.
3
Renal drug transporters and their significance in drug-drug interactions.
Acta Pharm Sin B. 2016 Sep;6(5):363-373. doi: 10.1016/j.apsb.2016.07.013. Epub 2016 Aug 9.
5
Transporter-Mediated Drug-Drug Interactions and Their Significance.
Adv Exp Med Biol. 2019;1141:241-291. doi: 10.1007/978-981-13-7647-4_5.
6
Drug uptake systems in liver and kidney.
Curr Drug Metab. 2003 Jun;4(3):185-211. doi: 10.2174/1389200033489460.
7
Cellular and molecular aspects of drug transport in the kidney.
Kidney Int. 2000 Sep;58(3):944-58. doi: 10.1046/j.1523-1755.2000.00251.x.
8
Renal organic anion transporters in drug-drug interactions and diseases.
Eur J Pharm Sci. 2018 Jan 15;112:8-19. doi: 10.1016/j.ejps.2017.11.001. Epub 2017 Nov 8.

引用本文的文献

1
Mitochondrial Dysfunction: The Silent Catalyst of Kidney Disease Progression.
Cells. 2025 May 28;14(11):794. doi: 10.3390/cells14110794.
2
Kidney Toxicity of Drugs for the Heart: An Updated Perspective.
Metabolites. 2025 Mar 11;15(3):191. doi: 10.3390/metabo15030191.
5
The nephrotoxicity of L. in rats: Mitochondrion as a target for renal toxicity of Aristolochic acids-containing plants.
Heliyon. 2023 Nov 4;9(11):e21848. doi: 10.1016/j.heliyon.2023.e21848. eCollection 2023 Nov.
6
Metabolic impact of genetic and chemical ADP/ATP carrier inhibition in renal proximal tubule epithelial cells.
Arch Toxicol. 2023 Jul;97(7):1927-1941. doi: 10.1007/s00204-023-03510-7. Epub 2023 May 8.
8
Potential therapeutic effects of Chinese meteria medica in mitigating drug-induced acute kidney injury.
Front Pharmacol. 2023 Apr 3;14:1153297. doi: 10.3389/fphar.2023.1153297. eCollection 2023.
9
Therapeutic Potential of Photobiomodulation for Chronic Kidney Disease.
Int J Mol Sci. 2022 Jul 21;23(14):8043. doi: 10.3390/ijms23148043.

本文引用的文献

1
Mitochondrial Metabolism in Acute Kidney Injury.
Semin Nephrol. 2020 Mar;40(2):101-113. doi: 10.1016/j.semnephrol.2020.01.002.
2
The cell biology of mitochondrial membrane dynamics.
Nat Rev Mol Cell Biol. 2020 Apr;21(4):204-224. doi: 10.1038/s41580-020-0210-7. Epub 2020 Feb 18.
3
Renal Reabsorption of Folates: Pharmacological and Toxicological Snapshots.
Nutrients. 2019 Oct 2;11(10):2353. doi: 10.3390/nu11102353.
5
Antiviral Drugs and Acute Kidney Injury (AKI).
Infect Disord Drug Targets. 2019;19(4):375-382. doi: 10.2174/1871526519666190617154137.
6
Systematic Overview of Aristolochic Acids: Nephrotoxicity, Carcinogenicity, and Underlying Mechanisms.
Front Pharmacol. 2019 Jun 11;10:648. doi: 10.3389/fphar.2019.00648. eCollection 2019.
8
Mitochondrial transcription and translation: overview.
Essays Biochem. 2018 Jul 20;62(3):309-320. doi: 10.1042/EBC20170102.
10
Role of Cardiolipin in Mitochondrial Signaling Pathways.
Front Cell Dev Biol. 2017 Sep 29;5:90. doi: 10.3389/fcell.2017.00090. eCollection 2017.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验