Suppr超能文献

潜在变量框架下调节与中介的整合:二阶调节中介模型估计方法比较

Integration of Moderation and Mediation in a Latent Variable Framework: A Comparison of Estimation Approaches for the Second-Stage Moderated Mediation Model.

作者信息

Feng Qingqing, Song Qiongya, Zhang Lijin, Zheng Shufang, Pan Junhao

机构信息

Department of Psychology, Sun Yat-sen University, Guangzhou, China.

出版信息

Front Psychol. 2020 Sep 10;11:2167. doi: 10.3389/fpsyg.2020.02167. eCollection 2020.

Abstract

An increasing number of studies have focused on models that integrate moderation and mediation. Four approaches can be used to test integrated mediation and moderation models: path analysis (PA), product indicator analysis (PI, constrained approach and unconstrained approach), and latent moderated structural equations (LMS). To the best of our knowledge, few studies have compared the performances of PA, PI, and LMS in evaluating integrated mediation and moderation models. As a result, it is difficult for applied researchers to choose an appropriate method in their data analysis. This study investigates the performance of different approaches in analyzing the models, using the second-stage moderated mediation model as a representative model to be evaluated. Four approaches with bootstrapped standard errors are compared under different conditions. Moreover, LMS with robust standard errors and Bayesian estimation of LMS and PA were also considered. Results indicated that LMS with robust standard errors is the superior evaluation method in all study settings. And PA estimates could be severely underestimated as they ignore measurement errors. Furthermore, it is found that the constrained PI and unconstrained PI only provide acceptable estimates when the multivariate normal distribution assumption is satisfied. The practical guidelines were also provided to illustrate the implementation of LMS. This study could help to extend the application of LMS in psychology and social science research.

摘要

越来越多的研究聚焦于整合调节和中介作用的模型。有四种方法可用于检验整合中介和调节模型:路径分析(PA)、乘积指标分析(PI,包括约束方法和无约束方法)以及潜变量调节结构方程(LMS)。据我们所知,很少有研究比较PA、PI和LMS在评估整合中介和调节模型时的表现。因此,应用研究人员在数据分析中很难选择合适的方法。本研究以二阶调节中介模型作为待评估的代表性模型,考察不同方法在分析此类模型时的表现。在不同条件下比较了四种带有自抽样标准误的方法。此外,还考虑了带有稳健标准误的LMS以及LMS和PA的贝叶斯估计。结果表明,带有稳健标准误的LMS在所有研究设定中都是更优的评估方法。并且PA估计可能会因忽略测量误差而被严重低估。此外,研究发现,只有在满足多元正态分布假设时,约束PI和无约束PI才能提供可接受的估计。还提供了实用指南以说明LMS的实施过程。本研究有助于拓展LMS在心理学和社会科学研究中的应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/47ab/7511593/73bd5a15b36e/fpsyg-11-02167-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验