Suppr超能文献

肽聚糖内肽酶在……中不同功能的遗传证据 。 (原文结尾不完整,翻译可能不太准确,你可补充完整原文以便更精准翻译)

Genetic Evidence for Distinct Functions of Peptidoglycan Endopeptidases in .

作者信息

Park Si Hyoung, Kim Yung Jae, Lee Han Byeol, Seok Yeong-Jae, Lee Chang-Ro

机构信息

Department of Biological Sciences and Bioinformatics, Myongji University, Yongin, South Korea.

Department of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul, South Korea.

出版信息

Front Microbiol. 2020 Sep 11;11:565767. doi: 10.3389/fmicb.2020.565767. eCollection 2020.

Abstract

Peptidoglycan (PG) is an essential component of the bacterial exoskeleton that plays a pivotal role in the maintenance of cell shape and resistance to cell lysis under high turgor pressures. The synthesis and degradation of PG must be tightly regulated during bacterial cell elongation and division. Unlike enzymes involved in PG synthesis, PG hydrolases show high redundancy in many bacteria including . In this study, we showed that PG endopeptidases have distinct roles in cell growth and division. Phenotypic analysis of mutants lacking one of seven PG endopeptidases identified a MepM-specific phenotype, salt sensitivity, and a MepS-specific phenotype, EDTA sensitivity. Complementation test in each phenotype showed that the phenotype of the mutant was restored only by MepM, whereas the phenotype of the mutant was restored by MepS or by overexpression of MepH, PbpG, or MepM. These distinct phenotypes depend on both the specific localizations and specific domains of MepM and MepS. Finally, using the identified phenotypes, we revealed that MepM and MepH were genetically associated with both penicillin-binding protein 1a (PBP1a) and PBP1b, whereas MepS and PbpG were genetically associated with only PBP1b. Notably, a defect in PBP1a or PBP1b phenocopied the mutant, suggesting the importance of MepM on PG synthesis. Therefore, our results indicate that each PG endopeptidase plays a distinct role in cell growth and division, depending on its distinct domains and cellular localizations.

摘要

肽聚糖(PG)是细菌外骨骼的重要组成部分,在维持细胞形状以及在高膨压下抵抗细胞裂解方面发挥着关键作用。在细菌细胞伸长和分裂过程中,PG的合成和降解必须受到严格调控。与参与PG合成的酶不同,PG水解酶在包括……在内的许多细菌中表现出高度冗余性。在本研究中,我们表明PG内肽酶在细胞生长和分裂中具有不同的作用。对缺乏七种PG内肽酶之一的突变体进行表型分析,确定了MepM特异性表型——盐敏感性,以及MepS特异性表型——EDTA敏感性。对每种表型进行的互补试验表明, 突变体的表型仅由MepM恢复,而 突变体的表型由MepS或MepH、PbpG或MepM的过表达恢复。这些不同的表型取决于MepM和MepS的特定定位和特定结构域。最后,利用所确定的表型,我们发现MepM和MepH在遗传上与青霉素结合蛋白1a(PBP1a)和PBP1b都相关,而MepS和PbpG在遗传上仅与PBP1b相关。值得注意的是,PBP1a或PBP1b的缺陷模拟了 突变体的表型,这表明MepM对PG合成的重要性。因此,我们的结果表明,每种PG内肽酶在细胞生长和分裂中都发挥着不同的作用,这取决于其不同的结构域和细胞定位。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ee7/7516022/5c4d19590493/fmicb-11-565767-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验