Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, United Kingdom.
Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom.
mBio. 2024 Apr 10;15(4):e0032524. doi: 10.1128/mbio.00325-24. Epub 2024 Mar 1.
Gram-negative bacteria have a thin peptidoglycan layer between the cytoplasmic and outer membranes protecting the cell from osmotic challenges. Hydrolases of this structure are needed to cleave bonds to allow the newly synthesized peptidoglycan strands to be inserted by synthases. These enzymes need to be tightly regulated and their activities coordinated to prevent cell lysis. To better understand this process in , we probed the genetic interactions of (encodes PBP1A) and (encodes PBP1B) with genes encoding peptidoglycan amidases and endopeptidases in envelope stress conditions. Our extensive genetic interaction network analysis revealed relatively few combinations of hydrolase gene deletions with reduced fitness in the absence of PBP1A or PBP1B, showing that none of the amidases or endopeptidases is strictly required for the functioning of one of the class A PBPs. This illustrates the robustness of the peptidoglycan growth mechanism. However, we discovered that the fitness of ∆ cells is significantly reduced under high salt stress and activity assays suggest that this phenotype is caused by a reduced peptidoglycan synthesis activity of PBP1A at high salt concentration.IMPORTANCE and many other bacteria have a surprisingly high number of peptidoglycan hydrolases. These enzymes function in concert with synthases to facilitate the expansion of the peptidoglycan sacculus under a range of growth and stress conditions. The synthases PBP1A and PBP1B both contribute to peptidoglycan expansion during cell division and growth. Our genetic interaction analysis revealed that these two penicillin-binding proteins (PBPs) do not need specific amidases, endopeptidases, or lytic transglycosylases for function. We show that PBP1A and PBP1B do not work equally well when cells encounter high salt stress and demonstrate that PBP1A alone cannot provide sufficient PG synthesis activity under this condition. These results show how the two class A PBPs and peptidoglycan hydrolases govern cell envelope integrity in in response to environmental challenges and particularly highlight the importance of PBP1B in maintaining cell fitness under high salt conditions.
革兰氏阴性菌的细胞质和外膜之间有一层薄的肽聚糖层,可保护细胞免受渗透挑战。这种结构的水解酶需要切断键,以使新合成的肽聚糖链能够被合成酶插入。这些酶需要被紧密调控,其活性需要协调,以防止细胞裂解。为了更好地了解 中的这一过程,我们在 envelope stress 条件下探测了 (编码 PBP1A)和 (编码 PBP1B)与编码肽聚糖酰胺酶和内肽酶的基因的遗传相互作用。我们广泛的遗传相互作用网络分析显示,在没有 PBP1A 或 PBP1B 的情况下,水解酶基因缺失与适应度降低的组合相对较少,这表明没有一种酰胺酶或内肽酶对于一种 A 类 PBPs 的功能是严格必需的。这说明了肽聚糖生长机制的稳健性。然而,我们发现 ∆ 细胞的适应度在高盐胁迫下显著降低,并且 活性测定表明,这种表型是由于 PBP1A 在高盐浓度下的肽聚糖合成活性降低所致。
重要的是,和许多其他细菌一样,它们具有惊人数量的肽聚糖水解酶。这些酶与合成酶协同作用,在一系列生长和应激条件下促进肽聚糖囊泡的扩张。合成酶 PBP1A 和 PBP1B 都有助于细胞分裂和生长期间的肽聚糖扩张。我们的遗传相互作用分析表明,这两种青霉素结合蛋白(PBPs)不需要特定的酰胺酶、内肽酶或溶菌转糖基酶即可发挥功能。我们表明,当细胞遇到高盐胁迫时,PBP1A 和 PBP1B 的工作效果并不相同,并证明在这种条件下,仅 PBP1A 不能提供足够的 PG 合成活性。这些结果表明,在 中,两种 A 类 PBPs 和肽聚糖水解酶如何响应环境挑战来控制细胞包膜的完整性,特别是强调了 PBP1B 在高盐条件下维持细胞适应度的重要性。