Suppr超能文献

使用竞争风险分析的横纹肌肉瘤患者的预后因素:SEER数据库病例研究

Prognostic Factors in Patients with Rhabdomyosarcoma Using Competing-Risks Analysis: A Study of Cases in the SEER Database.

作者信息

Han Didi, Li Chengzhuo, Li Xiang, Huang Qiao, Xu Fengshuo, Zheng Shuai, Wang Hui, Lyu Jun

机构信息

Department of Clinical Research, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province 510630, China.

School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi Province 710061, China.

出版信息

J Oncol. 2020 Sep 17;2020:2635486. doi: 10.1155/2020/2635486. eCollection 2020.

Abstract

BACKGROUND

Rhabdomyosarcoma (RMS) is a rare malignant soft-tissue sarcoma characterized by a poor outcome and unclear prognostic factors. This study applied a competing-risks analysis using data from the Surveillance, Epidemiology, and End Results (SEER) database to RMS patients, with the aim of identifying more accurate prognostic factors.

METHODS

Data of all patients with RMS during 1986-2015 were extracted from the SEER database. We used the competing-risks approach to calculate the cumulative incidence function (CIF) for death due to rhabdomyosarcoma (DTR) and death from other causes (DOC) at each time point. The Fine-Gray subdistribution proportional-hazards model was then applied in univariate and multivariate analyses to determine how the CIF differs between groups and to identify independent prognostic factors. The potential prognostic factors were analyzed using the competing-risks analysis methods in SAS and R statistical software.

RESULTS

This study included 3399 patients with RMS. The 5-year cumulative incidence rates of DTR and DOC after an RMS diagnosis were 39.9% and 8.7%, respectively. The multivariate analysis indicated that age, year of diagnosis, race, primary site, historic stage, tumor size, histology subtype, and surgery status significantly affected the probability of DTR and were independent prognostic factors in patients with RMS. A nomogram model was constructed based on multivariate models for DTR and DOC. The performances of the two models were validated by calibration and discrimination, with C-index values of 0.758 and 0.670, respectively.

CONCLUSIONS

A prognostic nomogram model based on the competing-risks model has been established for predicting the probability of death in patients with RMS. This validated prognostic model may be useful when choosing treatment strategies and for predicting survival.

摘要

背景

横纹肌肉瘤(RMS)是一种罕见的恶性软组织肉瘤,其预后较差且预后因素尚不明确。本研究对监测、流行病学和最终结果(SEER)数据库中的RMS患者数据进行了竞争风险分析,旨在识别更准确的预后因素。

方法

从SEER数据库中提取了1986 - 2015年期间所有RMS患者的数据。我们采用竞争风险方法计算每个时间点因横纹肌肉瘤死亡(DTR)和其他原因死亡(DOC)的累积发病率函数(CIF)。然后将Fine - Gray亚分布比例风险模型应用于单变量和多变量分析,以确定CIF在不同组之间的差异,并识别独立的预后因素。使用SAS和R统计软件中的竞争风险分析方法对潜在的预后因素进行分析。

结果

本研究纳入了3399例RMS患者。RMS诊断后DTR和DOC的5年累积发病率分别为39.9%和8.7%。多变量分析表明,年龄、诊断年份、种族、原发部位、历史分期、肿瘤大小、组织学亚型和手术状态显著影响DTR的概率,是RMS患者的独立预后因素。基于DTR和DOC的多变量模型构建了列线图模型。通过校准和区分对两个模型的性能进行了验证,C指数值分别为0.758和0.670。

结论

基于竞争风险模型建立了用于预测RMS患者死亡概率的预后列线图模型。这种经过验证的预后模型在选择治疗策略和预测生存方面可能有用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d3a/7519458/35ee3f3694ab/JO2020-2635486.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验