Suppr超能文献

一种用于心算脑电信号分类的新型进化预处理方法。

A new evolutionary preprocessing approach for classification of mental arithmetic based EEG signals.

作者信息

Ergün Ebru, Aydemir Onder

机构信息

Department of Electrical-Electronics Engineering, Faculty of Engineering, Recep Tayyip Erdogan University, Rize, Turkey.

Department of Electrical-Electronics Engineering, Faculty of Engineering, Karadeniz Technical University, Trabzon, Turkey.

出版信息

Cogn Neurodyn. 2020 Oct;14(5):609-617. doi: 10.1007/s11571-020-09592-8. Epub 2020 Apr 23.

Abstract

Brain computer interface systems decode brain activities from electroencephalogram (EEG) signals and translate the user's intentions into commands to control and/or communicate with augmentative or assistive devices without activating any muscle or peripheral nerve. In this paper, we aimed to improve the accuracy of these systems using improved EEG signal processing techniques through a novel evolutionary approach (fusion-based preprocessing method). This approach was inspired by chromosomal crossover, which is the transfer of genetic material between homologous chromosomes. In this study, the proposed fusion-based preprocessing method was applied to an open access dataset collected from 29 subjects. Then, features were extracted by the autoregressive model and classified by k-nearest neighbor classifier. We achieved classification accuracy (CA) ranging from 67.57 to 99.70% for the detection of binary mental arithmetic (MA) based EEG signals. In addition to obtaining an average CA of 88.71%, 93.10% of the subjects showed performance improvement using the fusion-based preprocessing method. Furthermore, we compared the proposed study with the common average reference (CAR) method and without applying any preprocessing method. The achieved results showed that the proposed method provided 3.91% and 2.75% better CA then the CAR and without applying any preprocessing method, respectively. The results also prove that the proposed evolutionary preprocessing approach has great potential to classify the EEG signals recorded during MA task.

摘要

脑机接口系统从脑电图(EEG)信号中解码大脑活动,并将用户意图转化为命令,以控制辅助设备和/或与之通信,而无需激活任何肌肉或外周神经。在本文中,我们旨在通过一种新颖的进化方法(基于融合的预处理方法),利用改进的EEG信号处理技术提高这些系统的准确性。这种方法的灵感来自染色体交叉,即同源染色体之间遗传物质的转移。在本研究中,所提出的基于融合的预处理方法应用于从29名受试者收集的公开数据集。然后,通过自回归模型提取特征,并由k近邻分类器进行分类。对于基于二进制心算(MA)的EEG信号检测,我们实现了67.57%至99.70%的分类准确率(CA)。除了获得88.71%的平均CA外,93.10%的受试者使用基于融合的预处理方法表现有所改善。此外,我们将所提出的研究与公共平均参考(CAR)方法以及不应用任何预处理方法的情况进行了比较。所取得的结果表明,所提出的方法分别比CAR方法和不应用任何预处理方法的情况提供了3.91%和2.75%更高的CA。结果还证明,所提出的进化预处理方法在对MA任务期间记录的EEG信号进行分类方面具有巨大潜力。

相似文献

2
Survey on the research direction of EEG-based signal processing.基于脑电图的信号处理研究方向调查
Front Neurosci. 2023 Jul 13;17:1203059. doi: 10.3389/fnins.2023.1203059. eCollection 2023.
6
Sleep staging algorithm based on multichannel data adding and multifeature screening.基于多通道数据添加和多特征筛选的睡眠分期算法。
Comput Methods Programs Biomed. 2020 Apr;187:105253. doi: 10.1016/j.cmpb.2019.105253. Epub 2019 Nov 30.

本文引用的文献

9
Open Access Dataset for EEG+NIRS Single-Trial Classification.用于脑电图+近红外光谱单试验分类的开放获取数据集
IEEE Trans Neural Syst Rehabil Eng. 2017 Oct;25(10):1735-1745. doi: 10.1109/TNSRE.2016.2628057. Epub 2016 Nov 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验