Suppr超能文献

将拮抗激活模式应用于心算的单次试验分类。

Applying antagonistic activation pattern to the single-trial classification of mental arithmetic.

作者信息

Liu Shixian

机构信息

Department of Mechatronics Engineering, Qingdao University of Science and Technology, Qingdao, China.

出版信息

Heliyon. 2022 Oct 20;8(10):e11102. doi: 10.1016/j.heliyon.2022.e11102. eCollection 2022 Oct.

Abstract

BACKGROUND

At present, the application of fNIRS in the field of brain-computer interface (BCI) is being a hot topic. By fNIRS-BCI, the brain realizes the control of external devices. A state-of-the-art BCI system has five steps which are cerebral cortex signal acquisition, data pre-processing, feature selection and extraction, feature classification and application interface. Proper feature selection and extraction are crucial to the final fNIRS-BCI effect. This paper proposes a feature selection and extraction method for the mental arithmetic task. Specifically, we modified the antagonistic activation pattern approach and used the combination of antagonistic activation patterns to extract features for enhancement of the classification accuracy with low calculation costs.

METHODS

Experiments are conducted on an open-acquisition dataset including fNIRS signals of eight healthy subjects of mental arithmetic (MA) tasks and rest tasks. First, the signals are filtered using band-pass filters to remove noise. Second, channels are selected by prior knowledge about antagonistic activation patterns. We used cerebral blood volume (CBV) and cerebral oxygen exchange (COE) of selected each channel to build novel attributes. Finally, we proposed three groups of attributes which are CBV, COE and CBV + COE. Based on attributes generated by the proposed method, we calculated temporal statistical measures (average, variance, maximum, minimum and slope). Any two of five statistical measures were combined as feature sets.

MAIN RESULTS

With the LDA, QDA, and SVM classifiers, the proposed method obtained higher classification accuracies the basic control method. The maximum classification accuracies achieved by the proposed method are 67.45 ± 14.56% with LDA classifier, 89.73 ± 5.71% with QDA classifier, and 87.04 ± 6.88% with SVM classifier. The novel method reduced the running time by 3.75 times compared with the method incorporating all channels into the feature set. Therefore, the novel method reduces the computational costs while maintaining high classification accuracy. The results are validated by another open-access dataset including MA and rest tasks of 29 healthy subjects.

摘要

背景

目前,功能近红外光谱技术(fNIRS)在脑机接口(BCI)领域的应用是一个热门话题。通过fNIRS-BCI,大脑实现对外部设备的控制。一个先进的BCI系统有五个步骤,即大脑皮层信号采集、数据预处理、特征选择与提取、特征分类以及应用接口。恰当的特征选择和提取对于最终的fNIRS-BCI效果至关重要。本文提出了一种针对心算任务的特征选择和提取方法。具体而言,我们改进了拮抗激活模式方法,并使用拮抗激活模式的组合来提取特征,以在低计算成本下提高分类准确率。

方法

在一个开放采集数据集上进行实验,该数据集包含八名健康受试者在心算(MA)任务和静息任务中的fNIRS信号。首先,使用带通滤波器对信号进行滤波以去除噪声。其次,根据关于拮抗激活模式的先验知识选择通道。我们使用所选每个通道的脑血容量(CBV)和脑氧交换(COE)来构建新的属性。最后,我们提出了三组属性,即CBV、COE和CBV + COE。基于所提出方法生成的属性,我们计算了时间统计量(平均值、方差、最大值、最小值和斜率)。五个统计量中的任意两个组合作为特征集。

主要结果

使用线性判别分析(LDA)、二次判别分析(QDA)和支持向量机(SVM)分类器,所提出的方法比基本控制方法获得了更高的分类准确率。所提出方法使用LDA分类器实现的最大分类准确率为67.45 ± 14.56%,使用QDA分类器为89.73 ± 5.71%,使用SVM分类器为87.04 ± 6.88%。与将所有通道纳入特征集的方法相比,新方法将运行时间减少了3.75倍。因此,新方法在保持高分类准确率的同时降低了计算成本。结果通过另一个包含29名健康受试者的MA和静息任务的开放获取数据集得到验证。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b6e/9593203/52d45d9200f2/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验