Suppr超能文献

用于荧光寿命预测的深度学习实现了高通量体内成像。

Deep Learning for Fluorescence Lifetime Predictions Enables High-Throughput In Vivo Imaging.

作者信息

Kapsiani Sofia, Läubli Nino F, Ward Edward N, Fernandez-Villegas Ana, Mazumder Bismoy, Kaminski Clemens F, Kaminski Schierle Gabriele S

机构信息

Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, U.K.

出版信息

J Am Chem Soc. 2025 Jul 2;147(26):22609-22621. doi: 10.1021/jacs.5c03749. Epub 2025 Jun 14.

Abstract

Fluorescence lifetime imaging microscopy (FLIM) is a powerful optical tool widely used in biomedical research to study changes in a sample's microenvironment. However, data collection and interpretation are often challenging, and traditional methods such as exponential fitting and phasor plot analysis require a high number of photons per pixel for reliably measuring the fluorescence lifetime of a fluorophore. To satisfy this requirement, prolonged data acquisition times are needed, which makes FLIM a low-throughput technique with limited capability for applications. Here, we introduce FLIMngo, a deep learning model capable of quantifying FLIM data obtained from photon-starved environments. FLIMngo outperforms other deep learning approaches and phasor plot analyses, yielding accurate fluorescence lifetime predictions from decay curves obtained with fewer than 50 photons per pixel by leveraging both time and spatial information present in raw FLIM data. Thus, FLIMngo reduces FLIM data acquisition times to a few seconds, thereby, lowering phototoxicity related to prolonged light exposure and turning FLIM into a higher throughput tool suitable for the analysis of live specimens. Following the characterization and benchmarking of FLIMngo on simulated data, we highlight its capabilities through applications in live, dynamic samples. Examples include the quantification of disease-related protein aggregates in non-anaesthetised () , which significantly improves the applicability of FLIM by opening avenues to continuously assess throughout their lifespan. Finally, FLIMngo is open-sourced and can be easily implemented across systems without the need for model retraining.

摘要

荧光寿命成像显微镜(FLIM)是一种强大的光学工具,广泛应用于生物医学研究,以研究样品微环境的变化。然而,数据收集和解释往往具有挑战性,传统方法如指数拟合和相量图分析需要每个像素有大量光子才能可靠地测量荧光团的荧光寿命。为了满足这一要求,需要延长数据采集时间,这使得FLIM成为一种低通量技术,应用能力有限。在这里,我们介绍了FLIMngo,这是一种深度学习模型,能够对从光子匮乏环境中获得的FLIM数据进行量化。FLIMngo优于其他深度学习方法和相量图分析,通过利用原始FLIM数据中存在的时间和空间信息,从每个像素少于50个光子获得的衰减曲线中得出准确的荧光寿命预测。因此,FLIMngo将FLIM数据采集时间缩短至几秒,从而降低了与长时间光照相关的光毒性,并将FLIM转变为一种适用于活体标本分析的更高通量工具。在对模拟数据进行FLIMngo的表征和基准测试之后,我们通过在活体动态样本中的应用突出了它的能力。例子包括对未麻醉的()中与疾病相关的蛋白质聚集体进行量化,这通过开辟在其整个生命周期中持续评估的途径,显著提高了FLIM的适用性。最后,FLIMngo是开源的,可以在各种系统中轻松实现,而无需重新训练模型。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验