Suppr超能文献

利用表面增强拉曼光谱中的化学增强技术进行单链DNA组成分析的机器学习

Machine learning for composition analysis of ssDNA using chemical enhancement in SERS.

作者信息

Nguyen Phuong H L, Hong Brandon, Rubin Shimon, Fainman Yeshaiahu

机构信息

University of California San Diego, Electrical and Computer Engineering, La Jolla, CA 92161, USA.

出版信息

Biomed Opt Express. 2020 Aug 18;11(9):5092-5121. doi: 10.1364/BOE.397616. eCollection 2020 Sep 1.

Abstract

Surface-enhanced Raman spectroscopy (SERS) is an attractive method for bio-chemical sensing due to its potential for single molecule sensitivity and the prospect of DNA composition analysis. In this manuscript we leverage metal specific chemical enhancement effect to detect differences in SERS spectra of 200-base length single-stranded DNA (ssDNA) molecules adsorbed on gold or silver nanorod substrates, and then develop and train a linear regression as well as neural network models to predict the composition of ssDNA. Our results indicate that employing substrates of different metals that host a given adsorbed molecule leads to distinct SERS spectra, allowing to probe metal-molecule interactions under distinct chemical enhancement regimes. Leveraging this difference and combining spectra from different metals as an input for PCA (Principal Component Analysis) and NN (Neural Network) models, allows to significantly lower the detection errors compared to manual feature-choosing analysis as well as compared to the case where data from single metal is used. Furthermore, we show that NN model provides superior performance in the presence of complex noise and data dispersion factors that affect SERS signals collected from metal substrates fabricated on different days.

摘要

表面增强拉曼光谱(SERS)因其具有单分子灵敏度的潜力以及DNA组成分析的前景,是一种用于生化传感的有吸引力的方法。在本论文中,我们利用金属特异性化学增强效应来检测吸附在金或银纳米棒基底上的200个碱基长度的单链DNA(ssDNA)分子的SERS光谱差异,然后开发并训练线性回归以及神经网络模型来预测ssDNA的组成。我们的结果表明,使用承载给定吸附分子的不同金属基底会导致不同的SERS光谱,从而能够在不同的化学增强机制下探测金属 - 分子相互作用。利用这种差异并将来自不同金属的光谱组合作为主成分分析(PCA)和神经网络(NN)模型的输入,与手动特征选择分析以及使用单一金属数据的情况相比,能够显著降低检测误差。此外,我们表明,在存在影响从不同日期制备的金属基底收集的SERS信号的复杂噪声和数据分散因素的情况下,神经网络模型具有卓越的性能。

相似文献

引用本文的文献

3
SERS sensing for cancer biomarker: Approaches and directions.用于癌症生物标志物的表面增强拉曼光谱传感:方法与方向。
Bioact Mater. 2023 Dec 31;34:248-268. doi: 10.1016/j.bioactmat.2023.12.018. eCollection 2024 Apr.

本文引用的文献

1
A Review on Surface-Enhanced Raman Scattering.表面增强拉曼散射综述
Biosensors (Basel). 2019 Apr 17;9(2):57. doi: 10.3390/bios9020057.
3
Intensity Fluctuations in Single-Molecule Surface-Enhanced Raman Scattering.单分子表面增强拉曼散射中的强度涨落
Acc Chem Res. 2019 Feb 19;52(2):456-464. doi: 10.1021/acs.accounts.8b00563. Epub 2019 Jan 22.
6
Individually addressable and dynamic DNA gates for multiplexed cell sorting.用于多重细胞分选的可寻址和动态 DNA 门。
Proc Natl Acad Sci U S A. 2018 Apr 24;115(17):4357-4362. doi: 10.1073/pnas.1714820115. Epub 2018 Apr 9.
7
The Controversial Orientation of Adenine on Gold and Silver.腺嘌呤在金和银上的争议性取向
Chemphyschem. 2018 May 7;19(9):1003-1015. doi: 10.1002/cphc.201701223. Epub 2018 Feb 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验