Suppr超能文献

MMM:综合集成建模和集成分析。

MMM: Integrative ensemble modeling and ensemble analysis.

机构信息

ETH Zürich, Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich, Switzerland.

出版信息

Protein Sci. 2021 Jan;30(1):125-135. doi: 10.1002/pro.3965. Epub 2020 Oct 17.

Abstract

Proteins and their complexes can be heterogeneously disordered. In ensemble modeling of such systems with restraints from several experimental techniques the following problems arise: (a) integration of diverse restraints obtained on different samples under different conditions; (b) estimation of a realistic ensemble width; (c) sufficient sampling of conformational space; (d) representation of the ensemble by an interpretable number of conformers; (e) recognition of weak order with site resolution. Here, I introduce several tools that address these problems, focusing on utilization of distance distribution information for estimating ensemble width. The RigiFlex approach integrates such information with high-resolution structures of ordered domains and small-angle scattering data. The EnsembleFit module provides moderately sized ensembles by fitting conformer populations and discarding conformers with low population. EnsembleFit balances the loss in fit quality upon combining restraint subsets from different techniques. Pair correlation analysis for residues and local compaction analysis help in feature detection. The RigiFlex pipeline is tested on data simulated from the structure 70 kDa protein-RNA complex RsmE/RsmZ. It recovers this structure with ensemble width and difference from ground truth both being on the order of 4.2 Å. EnsembleFit reduces the ensemble of the proliferating-cell-nuclear-antigen-associated factor p15 from 4,939 to 75 conformers while maintaining good fit quality of restraints. Local compaction analysis for the PaaA2 antitoxin from E. coli O157 revealed correlations between compactness and enhanced residual dipolar couplings in the original NMR restraint set.

摘要

蛋白质及其复合物可能存在异质无序。在使用多种实验技术的约束对这些系统进行集合建模时,会出现以下问题:(a)整合在不同条件下不同样本获得的不同约束;(b)估计现实集合的宽度;(c)充分采样构象空间;(d)通过可解释数量的构象来表示集合;(e)具有站点分辨率的弱顺序识别。在这里,我引入了几个解决这些问题的工具,重点介绍了利用距离分布信息来估计集合宽度的方法。RigiFlex 方法将这种信息与有序结构域的高分辨率结构和小角散射数据集成在一起。EnsembleFit 模块通过拟合构象种群并丢弃种群数量较低的构象来提供中等大小的集合。EnsembleFit 通过平衡来自不同技术的约束子集的组合来平衡拟合质量的损失。残基对关联分析和局部紧凑化分析有助于特征检测。RigiFlex 管道在结构为 70 kDa 蛋白-RNA 复合物 RsmE/RsmZ 的模拟数据上进行了测试。它以 4.2 Å 的顺序恢复了该结构,其集合宽度和与真实值的差异都在该范围内。EnsembleFit 将增殖细胞核抗原相关因子 p15 的增殖细胞核抗原相关因子 p15 的集合从 4939 个减少到 75 个构象,同时保持约束的良好拟合质量。来自大肠杆菌 O157 的 PaaA2 抗毒素的局部紧凑化分析显示,紧凑度与原始 NMR 约束集中增强的残余偶极耦合之间存在相关性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cce6/7737775/ab34dceb4a58/PRO-30-125-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验