Suppr超能文献

基于熵驱动分相的粗粒度模型。

Coarse-Grained Model of Entropy-Driven Demixing.

机构信息

Computational and Chemical Biology, Fondazione Istituto Italiano di Tecnologia, Genova 16163, Italy.

School of Physics, University College, Dublin 4, Ireland.

出版信息

J Phys Chem B. 2020 Oct 15;124(41):9267-9274. doi: 10.1021/acs.jpcb.0c07575. Epub 2020 Oct 4.

Abstract

Entropy-driven demixing transitions play an important role in a variety of phenomena in solution chemistry, in mixtures of ionic liquids, in polymers, and in biosystems. A simple coarse-grained model of a binary (A and B) fluid mixture of Lennard-Jones particles carrying classical harmonic oscillators whose frequency decreases with increasing homo-coordination separates into two nearly pure phases with increasing , as the entropy gain in lowering the oscillators' frequency overcomes the potential energy and ideal entropy advantage of the homogeneous phase. We characterize features of the demixing transition and outline physical questions that can be addressed by this simple and inexpensive model. Besides and beyond these conceptual points, we provide examples of how the model could be adapted to real systems, aiming at their quantitative description by a coarse-grained model made of particles carrying momentum, energy, and entropy.

摘要

熵驱动的分相转变在溶液化学、离子液体混合物、聚合物和生物系统中的各种现象中起着重要作用。一个携带经典谐振子的二元(A 和 B)Lennard-Jones 粒子流体混合物的简单粗粒化模型,其频率随同配位数的增加而降低,当降低谐振子频率的熵增益克服了同相的位能和理想熵优势时,混合物会分离成两个近乎纯的相。我们描述了分相转变的特征,并概述了可以通过这个简单且廉价的模型来解决的物理问题。除了这些概念性的观点之外,我们还提供了如何将模型应用于实际系统的示例,旨在通过由携带动量、能量和熵的粒子组成的粗粒化模型对其进行定量描述。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验