Suppr超能文献

应用于金兹堡 - 朗道模型的变分增强采样的粗粒化。

Coarse graining from variationally enhanced sampling applied to the Ginzburg-Landau model.

作者信息

Invernizzi Michele, Valsson Omar, Parrinello Michele

机构信息

Department of Physics, Eidgenössische Technische Hochschule (ETH) Zurich c/o Università della Svizzera Italiana (USI) Campus, 6900 Lugano, Switzerland.

Facoltà di Informatica, Instituto di Scienze Computationali, and National Center for Computational Design and Discovery of Novel Materials MARVEL, Università della Svizzera Italiana, 6900 Lugano, Switzerland.

出版信息

Proc Natl Acad Sci U S A. 2017 Mar 28;114(13):3370-3374. doi: 10.1073/pnas.1618455114. Epub 2017 Mar 14.

Abstract

A powerful way to deal with a complex system is to build a coarse-grained model capable of catching its main physical features, while being computationally affordable. Inevitably, such coarse-grained models introduce a set of phenomenological parameters, which are often not easily deducible from the underlying atomistic system. We present a unique approach to the calculation of these parameters, based on the recently introduced variationally enhanced sampling method. It allows us to obtain the parameters from atomistic simulations, providing thus a direct connection between the microscopic and the mesoscopic scale. The coarse-grained model we consider is that of Ginzburg-Landau, valid around a second-order critical point. In particular, we use it to describe a Lennard-Jones fluid in the region close to the liquid-vapor critical point. The procedure is general and can be adapted to other coarse-grained models.

摘要

处理复杂系统的一种有效方法是构建一个粗粒度模型,该模型能够捕捉其主要物理特征,同时在计算上是可行的。不可避免地,这种粗粒度模型会引入一组唯象参数,这些参数通常不容易从底层的原子系统中推导出来。我们基于最近引入的变分增强采样方法,提出了一种计算这些参数的独特方法。它使我们能够从原子模拟中获得这些参数,从而在微观和介观尺度之间建立直接联系。我们考虑的粗粒度模型是金兹堡-朗道模型,在二阶临界点附近有效。特别是,我们用它来描述接近液-气临界点区域的 Lennard-Jones 流体。该过程具有通用性,可适用于其他粗粒度模型。

相似文献

引用本文的文献

4
Neural networks-based variationally enhanced sampling.基于神经网络的变分增强采样。
Proc Natl Acad Sci U S A. 2019 Sep 3;116(36):17641-17647. doi: 10.1073/pnas.1907975116. Epub 2019 Aug 15.

本文引用的文献

1
Hierarchical Protein Free Energy Landscapes from Variationally Enhanced Sampling.基于变分增强采样的分层蛋白质自由能景观
J Chem Theory Comput. 2016 Dec 13;12(12):5751-5757. doi: 10.1021/acs.jctc.6b00786. Epub 2016 Nov 4.
2
A variational approach to nucleation simulation.一种用于成核模拟的变分方法。
Faraday Discuss. 2016 Dec 22;195:557-568. doi: 10.1039/c6fd00127k.
3
4
Enhancing Important Fluctuations: Rare Events and Metadynamics from a Conceptual Viewpoint.增强重要涨落:从概念角度看罕见事件与元动力学
Annu Rev Phys Chem. 2016 May 27;67:159-84. doi: 10.1146/annurev-physchem-040215-112229. Epub 2016 Mar 10.
6
Well-Tempered Variational Approach to Enhanced Sampling.微调变分方法增强采样。
J Chem Theory Comput. 2015 May 12;11(5):1996-2002. doi: 10.1021/acs.jctc.5b00076. Epub 2015 May 4.
7
Variationally Optimized Free-Energy Flooding for Rate Calculation.变分优化自由能渗流算法在速率计算中的应用。
Phys Rev Lett. 2015 Aug 14;115(7):070601. doi: 10.1103/PhysRevLett.115.070601. Epub 2015 Aug 10.
8
Variational approach to enhanced sampling and free energy calculations.变分方法在增强采样和自由能计算中的应用。
Phys Rev Lett. 2014 Aug 29;113(9):090601. doi: 10.1103/PhysRevLett.113.090601. Epub 2014 Aug 27.
9
Coarse-graining methods for computational biology.计算生物学的粗粒化方法。
Annu Rev Biophys. 2013;42:73-93. doi: 10.1146/annurev-biophys-083012-130348. Epub 2013 Feb 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验